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Task: You are tasked to write an academic article on a ground breaking methodology
your research lab has discovered called ”Rung-Kutta” iterations for numerical differentia-
tion. Although this method actually exists, this assignment should be done as if you are
the one who has discovered it and are hereby trying to publish it.
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Abstract

Given the ubiquity of differential equations in mathematical modeling, the design of
suitable numerical algorithms for accurately approximating solutions is essential. In this
article, we present the Runge-Kutta iterative methodology for numerical differentiation,
offering a substantial improvement in accuracy and convergence over classical
techniques. Namely, we described the fundamental flaw with Euler’s Method; it only has
first-order convergence, lending itself to rapid error accumulation over large enough step
sizes. Through the synthesis of Euler’s method, midpoint approximations, and weighted
averaging, the Runge-Kutta 4 scheme accomplishes a robust fourth-order global
truncation error (O(h4)), minimizing the aggregate error for small and large step sizes.
Alongside its fast convergence, RK-4 can achieve similar results compared to Euler’s
method with only roughly 1

4
of the necessary computations, enabling larger step sizes

and lowering the overall computational cost. Additionally, our study exemplifies the
strength of RK-4 in two applications such as modeling decay and epidemics, where the
latter does not have a realized solution. Nonetheless, the RK-4 exhibited extraordinary
precision, widening the difference in error against RK-1 by up to 108 times for the
smallest step size and 10 times for the largest step size. Hence, our results agree with
the theoretical analysis posed in this article, suggesting that Runge-Kutta can be well
extrapolated to a broad range of models with reliability. Ultimately, our findings establish
Runge-Kutta as a transformative algorithm in numerical analysis with boundless
applications in STEM related disciplines.
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1 Introduction

1.1 Motivation

Differential equations have been
widely used and play a crucial role in
mathematical and scientific modeling.
Although analytical solutions can be
found for some differential equations,
others require the development of
iterative solutions. With existing
numerical differentiation techniques, their
mileage varies in capturing important
relationships and reliably fitting into
models.

In response to these challenges, our
research lab has proposed a new iterative
approach, named the “Runge-Kutta (RK)”
method. Our experimental work has
proven that Runge-Kutta promises a
significant improvement in accuracy,
convergence, stability, and adaptability of
numerical differentiation that other
methods may fail to satisfy. With these
ideas in mind, we aim to show that
Runge-Kutta is a step forward in
numerical differentiation that STEM
professionals and researchers can
benefit from.

1.2 Overview of the Article

In this report, we present the
theoretical foundation and analysis of the
Runge-Kutta methodology and highlight
its strengths in numerically solving
differential equations with accuracy and
stability. In Section 2, we provide a

detailed explanation and derivation of the
fourth-order Runge-Kutta algorithm. In
Section 3, we demonstrate the
Runge-Kutta 1, 2, and 4 methods to two
relevant differential equations, providing
side-by-side comparisons and analysis.
Lastly, conclusions and opinions are
offered in Section 4.

2 Methodology

2.1 Euler’s Method

The primary challenges confronting a
numerical analyst of ordinary differential
equations appear in a simple form; we
wish to construct a reasonable
approximation to the unique solution of
the initial value problem (IVP):

dy

dt
= f(y, t), y(t0) = y0. (1)

The very simplest of these numerical
solutions is Euler’s method, which
introduces the notion of discretizing a
continuous space into partitioned
intervals. More precisely, starting at t0,
we define successive mesh points
t0 < t1 < t2 < · · · < tn. Without loss of
generality, we impose a uniform step size
h such that

h = tk−1 − tk > 0 (2)

is independent of k. Figure 2.1 shows
how one partitions a domain, adding h to
tk to obtain the subsequent mesh point
tk+1. The choice of h is not often done
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Figure 2.1: Step sizes and Mesh points

naively as seen here; it is often assumed
to be relatively small.

The easiest approximation for y(t) is
through linearization, using the line
tangent to y(t) as an estimation for
y(tk+1). Recall that we can obtain a
tangent line through a first-order Taylor
Series. Centering about tk+1, we have

y(tk+1) ≈ yk + (tk+1 − tk)
dy

dt
(3)

y(tk+1) ≈ yk + hf(yk, tk) (4)

Here we used equations (1) and (2) to
convert (3) into (4), thereby deriving the
iterative scheme for Euler’s Method.

As sketched in Figure 2.2, Euler’s
Method approximates the solution pretty
well at the start, but gradually accrues
error and, in turn, lowers the overall
accuracy. To understand how the error is
accumulated, we define the h2 term of the
second-order Taylor Series for y(tk+1) to

Figure 2.2: Euler’s Method

be the local truncation error

y(tk+1) ≈ yk + hf(yk, tk) +
h2

2
f ′(ξ(yk, tk)),

(5)

where ξ is the error with respect to yk, tk.
Therefore, the local error scales
quadratically. If we set h to be 10 times
smaller, then the error shrinks by 100
times, making it important to set h small
enough to make the error insignificant.
However, set h to be too large, and
Euler’s Method diverges, over or
undershooting the realized solution. By
letting N = T

h
as the total number of

mesh points, then we obtain the global
truncation error

N
h2

2
f ′(ξ(yk, tk)) =

hT

2
f ′(ξ(yk, tk)), (6)

suggesting that Euler’s method follows an
O(h) order of convergence, implying that
the error depends linearly on the step
size h.
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2.2 Runge-Kutta Method

What we will find is that Euler’s model
is an elementary incarnation of numerical
schemes in ordinary differential
equations. The Runge-Kutta iterative
method, to be derived in this section,
synthesizes Euler’s and Midpoint
Approximations to generate a robust
model for numerical differentiation. In this
section, we will introduce the RK-1, RK-2,
and RK-4 methods, each corresponding
to their order of convergence and number
of “slope samples” required.

We proceed with some notation. We
denote ck, k = 1, 2, 3, 4, as the four
necessary slope approximations. For
instance, the RK-1 method, takes on the
form

c1 = hf(yk, tk) (7)
yk+1 = yk + c1.

Comparing to equation (4), RK-1 is
actually Euler’s Method rewritten with our
notation. Here, we say that RK-1 uses
one slope sample, c1, to estimate yk+1. By
adding more slope samples and taking
their weighted average, we can
“leverage,” or influence, the consistency
of our approximation. Instead of taking
one full time step, we can go halfway and
also take the slope at tk + h

2
, serving as

the midpoint between tk and tk+1. We use
the previous slope, c1, to estimate y at the
midpoint, given by yk +

1
2
c1.

The new slope, c2, is obtained by
evaluating f at this new t and y. So, each

successive slope sample is merely an
updated version of the previous one. If
we stop here, then we have the set of
updates

c1 = hf(yk, tk)

c2 = hf

(
tk +

h

2
, yk +

c1
2

)
(8)

yk+1 = yk + c2,

which is the Runge-Kutta 2 method as
pictured by Figure 2.3.

Figure 2.3: Runge-Kutta 2

The blue arrows indicate the two slope
samples we constructed and the red
arrow extends the slope c2, from yk,
through an entire time step to guess yk+1,
obtaining a global O(h2) order of
convergence. Had we used RK-1, we
would simply extend the slope from c1

from yk to yk+1, producing a larger error.
Although there is already a noticeable

improvement moving from RK-1 to RK-2,
we can further strengthen the
convergence by adding more slope
samples. Moving forward from RK-2,
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apply the following steps to reach RK-4:

1. Take c2 and apply it to a half step,
starting at (tk, yk).

2. Then, apply the same idea that we
used to calculate c2: Evaluate f at
tk +

h
2

and yk +
1
2
c2 to acquire c3.

3. Take c3 and apply it to a full step,
starting at (tk, yk).

4. c4 is computed by evaluating f at
tk+1, yk+1.

5. The finalized slope is the weighted
average of our four slope samples.
Recall that we used full steps for c1
and c4, but only half steps for c2, c3.
To make them full slopes, multiply
by 2 (i.e. 2c2, 2c3).

6. This means that c2 and c3 make two
contributions to the overall slope,
but c1, c4 contribute just once. The
weighted average is reached by
summing the slope contributions
and dividing by the total number of
slope contributions. This completes
one iteration of RK-4.

Mathematically, the steps taken to
achieve RK-4 are summarized by the
series of updates.

c1 = hf(tk, yk)

c2 = hf

(
tk +

h

2
, yk +

c1
2

)
c3 = hf

(
tk +

h

2
, yk +

c2
2

)
(9)

c4 = hf(tk + h, yk + c3)

yk+1 = yk +
1

6
(c1 + 2c2 + 2c3 + c4).

Figure 2.4 illustrates how successive

Figure 2.4: Runge-Kutta 4

slope samples are created and ultimately
refined to achieve a precise and accurate
estimation of yk+1, which is where RK-1
and RK-2 fell short. This is due to the
higher order of convergence, namely
fourth-order O(h4). Formulating a
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fifth-order Taylor Series about tk+1 yields

y (tk+1) = yk + hf(yk, tk) +
h2

2
f ′(yk, tk)

+
h3

6
f ′′(yk, tk) +

h4

24
f ′′′(yk, tk)

+
h5

120
f (4) (ξ(yk, tk)) .

(10)

Once again, h5

120
f (4) (ξ(yk, tk)) is the

fifth-order local truncation error.
Computing each derivative is an
exhaustive application of the Chain Rule,
requiring a Taylor Series expansion of
each term. In the end, the powers of h will
end up agreeing with this Taylor Series
expansion, obtaining a global fourth-order
of convergence with respect to h once
multiplying over total number of mesh
points N = T

h
. Additionally, we have that

for each mesh point, 5 calculations−4
slope samples and 1 update− are
required to successfully complete one
iteration of RK-4. Therefore, it is
imperative that an appropriate choice for
h is mindfully considered to strike a
balance with accuracy and computational
cost. The trade-off can be examined by
taking the limit

lim
h→0

N = lim
h→0

T

h
, (11)

implying that our aggregate error gets
infinitesimally small at the expense of
computing infinitely many iterations.

So, each iteration of the RK-4 method
maintains the same computational effort
as four RK-1 iterations or two RK-2

iterations. Additionally, a more revealing
comparison is given by h: If we
approximate a solution using RK-4, RK-1
would require h

4
time steps to reach

comparable accuracy. However, this in
turn, requires four times as many
computations. Therefore, the
computational expense is practically the
same, but RK-4 will achieve the best
results.

3 Results and Analysis

3.1 Carbon-15 Half-Life

We proceed by applying the
Runge-Kutta 1, 2, 4 iterative methods to
model the half-life of a Carbon-15 isotope,
whose differential equation is given by

dy

dt
= − ln(2)

τ
y (12)

where τ = 2.45 is the specified half-life in
seconds. The analytic solution to the
differential equation (12) is

y(t) =

(
1

2

) t
τ

. (13)

On the following page, Figure 3.1
illustrates the exact solution y, alongside
the RK-1, RK-2, and RK-4 approximations
for t ∈ C[0, 15] seconds. We selected four
different step sizes−h = 0.01, 0.1, 1, 5,
corresponding to 1500, 150, 15, and 3
mesh points−to test the accuracy and
overall convergence of each iterative
method.
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Figure 3.1: Runge-Kutta models for h = (a) 0.01, (b) = 0.1, (c) = 1, and (d) = 5 seconds

We observe no issues at h = 0.01, 0.1,
as anticipated for a small choice of h.
However, starting at h = 1, RK-1
undervalues the true decay of the isotope
(though it still captures the overarching
pattern), whereas RK-2 and RK-4 still
converge to the exact solution. At h = 5,
RK-2 follows the correct trend, but has a
modest residual compared to y(t). RK-1
appears to have completely diverged
from y: When connecting each point, the
resulting curve implies that the isotope
decays, then grows and decays again,
misaligned with a true decaying isotope.
RK-4, on the other hand, promises an
almost perfect solution with a

substantially lower error than the other
two models.

h RK-1 RK-2 RK-4
0.01 3× 10−4 3× 10−7 10−13

0.1 3× 10−3 3× 10−5 10−9

1.00 3× 10−2 3× 10−3 10−5

5.00 2× 10−1 2× 10−1 2× 10−2

Table 3.2: Mean Errors for the Carbon-15
Half-Life model

The poor performance of RK-1 and
RK-2 is further accentuated in Table 3.2,
which lists the mean squared error (MSE)
for each choice of h. It is clear that RK-4
has phenomenally good accuracy,
outperforming its rivals by having the
smallest error for all h.
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Moreover, it is worth noting that the
change in error over each time step
agrees with the local truncation error
described in Section 2. Recall that we
proved the respective orders of
convergence for RK-1, RK-2, and RK-4:
O(h),O(h2), and O(h4). As seen by the
table, each decrease in h by a factor of 1

10

improves the accuracy in the completed
solution by 4 additional decimal digits, in
accordance with its status as a
fourth-order method. Likewise, with the
same dilation in h, RK-2 and RK-1 see a
100 times and 10 times increase in
accuracy, respectively.

Lastly, take h = 5 seconds. In order
for RK-1 to reach the same standard of
accuracy as RK-4, h needs to be
partitioned into 4 additional time steps, or
use h = 1.25. This matches the intuition
of computational effort in Section 2.
While we did not use h = 1.25, the
accuracy is roughly the same at h = 1 for
RK-1 (3× 10−2) as it is when h = 5 for
RK-4 (2× 10−2).

3.2 SIR Model

The differential equation model for
decay, as shown in the Carbon-15
isotope, yields an analytic, or explicit
solution. However, we should also
examine how our method fares against a
model where an analytic solution cannot
be ascertained through existing
techniques.

The SIR
(Susceptible-Infected-Recovered) model

for pandemic prediction is one such
model. Plainly, the SIR model depicts the
dynamics of a pandemic (without
vaccines) with the change of susceptible
individuals S(t), infectious individuals
I(t), and removed individuals (including
recovered, immune, and deceased) R(t).
The interaction to be observed uses the
set of differential equations

dS

dt
= −β

IS

Npop

(14)

dI

dt
= β

IS

Npop

− γI (15)

dR

dt
= γI, (16)

where parameter β denotes the average
number of contacts per person per time
multiplied by the probability of disease
transmission in a contact between a
susceptible and infectious subject
(quantifies the “transmissibility” of the
disease) and parameter γ is the recovery
rate (including death). Npop is the total
population. Generally, SIR models are
applied in predicting outbreaks and
quickly identifying intervention methods
to “flatten the curve.”

Our goal is to use each Runge-Kutta
method to solve the differential equation
with initial conditions S(0) = 997,
I(0) = 3, R(0) = 0, setting β = 0.2,
γ = 0.04 and Npop = 1000 as the
remaining parameters. We choose h = 1

and h = 10 days as our two step sizes,
corresponding to 100 and 10 total mesh
points.

On the following page, Figure 3.3
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Figure 3.3: Runge-Kutta Approximations for SIR Model using h = 1, 10 days

displays the approximated solutions to
the unique SIR model with said time
steps. We hope to observe a consistent
decrease in susceptible individuals and
increase in recovered individuals with the
choices for β and γ. In addition, there
should be a peak for infected individuals
and eventually a decline.

Because there is no analytic solution
for the SIR model, we cannot compute
accuracy empirically. Instead, we rely on
how much our solutions change as we
perturb h. For h = 1, the three RK
estimates are in agreement with the
expected trend, and we will use this as a
reference while controlling for an
increased step size. When we increase h

tenfold, the models retain the desired
trend. However, the behavior of RK-1 is
somewhat altered. The steep descent in
susceptible individuals occurs much later

(say, 20 days). In turn, this delays the
steep ascent of infected individuals. Had
an international health organization
followed the RK-1 model, they would be
inclined to believe they have more time to
readily prepare for an outbreak, although
the h = 1 approximations suggest that
time is rather limited. Additionally, the
peak of infected individuals is skewed to
the right and the solution for susceptible
individuals stops receiving updates,
halted at 0 after 80 days. In contrast, the
RK-2 and RK-4 models mostly match the
peak for I(t) and S(t) steadily converges
to 0.

With these considerations, RK-4 and
even RK-2 have a phenomenal grasp on
the underlying pattern that we were
looking for and can thus be applied to
non-autonomous differential equations
with large step sizes.
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4 Conclusion

The Runge-Kutta iterative scheme
establishes a novel approach for
numerical differentiation that has proved
to offer superior accuracy and versatility
compared to its predecessors. Previous
techniques are limited to singular updates
to slopes which inhibits convergence if
not applied carefully. By refining Euler’s
method with midpoint methods, we
founded a rigorous derivation of the
Runge Kutta scheme with the theoretical
analysis to validate its strong fourth-order
convergence.

Our primary objectives were to
develop a robust differentiation technique
that can deliver promising accuracy while
maintaining a reasonable computational
cost. The results confirm that our method
achieves these goals. For models whose
differential equation has an analytical
solution such as the half-life of a Carbon
isotope, Runge Kutta 4 consistently
provided remarkable precision by having
the smallest mean error for any choice of
step size, seeing as much as 108 times
less error when h is small. Since we have
no hope of solving the majority of
differential equations explicitly, we also
demonstrated that Runge Kutta, through
its convergence to a unique solution in
SIR modeling, is an adaptive numerical
algorithm in these vast situations.

By satisfying these objectives, we
believe that Runge Kutta is broadly
applicable to a myriad of scientific and

engineering frameworks. Besides the
one discussed in this article, we envision
the Runge Kutta schemes will quickly
integrate itself into branches of physics,
such as aerospace engineering, fluid
dynamics, mechanical systems, and
simulations.

While the Runge-Kutta methodology
is already capable of numerically solving
complicated models, there remain
opportunities for further refinement. In
the future, we could explore adaptations
of Runge-Kutta in advanced
mathematical fields such as partial
differential equations, stochastic
differential equations, and unstable
differential equations.

Ultimately, our findings illustrate an
immense breakthrough in numerical
methods and analysis, and we anticipate
that the Runge Kutta algorithm will
naturally blend into new research
methods and practical implementations
across scientific and engineering
disciplines.
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Appendices

Figure 3.1: Runge-Kutta plots for Carbon-15 Half-Life

Table 3.2: Precise Mean Error for the Carbon-15 Half-Life model with respect to the
analytical solution

h RK-1 RK-2 RK-4
0.01 3.08× 10−4 2.91× 10−7 1.16× 10−13

0.1 3.09× 10−3 2.95× 10−5 1.18× 10−9

1.00 3.11× 10−2 3.42× 10−3 1.38× 10−5

5.00 2.14× 10−1 2.03× 10−1 1.64× 10−2
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Figure 3.3: Runge-Kutta plots for SIR Model
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Extra Page

1. The target audience is the editor and publisher of this article.

2. Introduce and publish a new methodology for numerical differentiation, namely
Runge-Kutta, and get the theory accepted into the mathematical/STEM field.

3. The main research I did in preparation was reviewing the Explicit Euler method,
forward/backward differencing, and developing a better intuition of order of
convergence. The sources I used are published from academic institutions and
appear to be reliable.

4. Using the differential equation representing the Half-Life of a Carbon-15 isotope,
the Runge-Kutta 4 method numerically solves the differential equation with the
lowest residual sum of squared error. It is also present within the graphs that the
iterations of the Runge-Kutta 4 curve, when connected, best captures/fits the decay
of the isotope (a lot of overlapping or substantially low deviance). Additionally,
when applied to the SIR model, the RK methods fit the pattern for h = 1, but RK-1
falls apart for h = 10.

5. The results, as mentioned in the previous part, applies the differential equation of a
Carbon-15 isotope’s half-life. There are 4 plots, each with increasing time steps (dt
= 0.01, 0.1, 1, 5 seconds), generating the numerical solution to the half-life model
by the Runge-Kutta 1, 2, and 4 iterative methods. A table summarizes, from the
same models shown in the graph, the mean error between the predicted and
observed output. For the SIR model, I used h = 1 as a benchmark for comparison
when analyzing the h = 10 approximations.

6. After introducing and deriving the Runge-Kutta method for numerical differentiation,
we conclude that this iterative approach (namely RK-4) significantly lowers the
aggregate error compared to conventional finite-difference methods (i.e. Explicit
Euler, forward/backward Euler). As expected with a high order of convergence
(O(h4)), we showed that Runge-Kutta 4 exhibited great stability and accuracy when
applied to differential equations.


