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At its core, fluid mechanics studies fluids in motion. Despite the simple definition, modeling fluids in the real 
world is complicated and arguably one of the hardest fields in physics to study due to the difficulty in 
predicting patterns. 

Nonetheless, the applications in fluid mechanics are invaluable. 

The crux of these applications are the Navier-Stokes equations! Through derivation, we will see how the 
Navier-Stokes equations is a universal model of fluid mechanics.

Why do we study Fluid Mechanics?



Review of Vector Fields
A vector field      takes a point in space and assigns it to a 
vector. For example, in 3 dimensions, we observe

In fluid mechanics, vector fields often represent the 
velocity of a fluid at a given point, as we will see with the 
Navier-Stokes equations.

As an example, to the right is a two-dimensional vector 
field. Notice that the length of the vector at any point 
corresponds to its “strength.”

Obtained via geogebra.org



Review of Vector Fields – Flux
Flux over a surface - We say the flux of a vector 
field over a surface is measured by how much of 
the vector field passes through the surface. In fluid 
mechanics, transport flux measures how much 
fluid passes through a surface.

Surface with
maximum flux

Surface with
no flux Each surface has some flux



Review of Vector Fields – Divergence
Divergence - Suppose we are given a vector 
field

          

The divergence of a vector field at a given point 
tells us how the strength of the vector field is 
changing in small neighborhoods surrounding 
our point. Therefore, we need only look at the 
sums of our partial derivatives with respect to 
the corresponding component in our field, 
yielding a scalar output. So, the divergence is 
computed by

In fluid mechanics, divergence models the 
change in density of a fluid at a given point. For 
incompressible fluids, its divergence is zero.



When studying physics, we recall some of the most conservation theorems: mass, momentum, energy. 
This is the foundation of the Navier-Stokes equations: the above conservation principles applied to 
fluids! 

In particular, we will derive the mass and momentum equations for flow over a 3-dimensional domain. 
Let                        be the vector field of a fluid acting over a surface. Then, the Navier-Stokes equations 
are given by:

The solution                    at an arbitrary point in our fluid gives us its velocity components at a specific 
time.

Note that conservation of momentum yields a set of equations, one for each component (x, y, and z).

The Navier-Stokes Equations (for incompressible fluids)

Conservation of Mass Equation (1)

Conservation of Momentum Equations (2 – 4)



Statement: The mass in our domain is conserved; or more precisely, the change in mass of our domain is 
equal to its change in flux across every boundary. For simplicity, we will let our domain be a cube, denoted 
by    . We can write the conservation statement as such: 

We use the formulaic definition of mass to find an expression for           , as shown below.

Conservation of Mass Equation

(1) Volume of our domain = density * volume

(2) Taking the derivative yields change in mass

Now, we will use the definition of flux to find an alternative expression for          .



Recall the statement: the change in mass is equal to the sum of fluxes entering (or exiting) every boundary. 
The rate in which mass enters a surface (mass flow rate) is given by

All we need to do is apply this to all 6 surfaces of our cube! We will only show the change in flow in the x-
direction as an example. Remember that we use      to denote the x-component of the velocity. 

Conservation of Mass Equation

To maintain conservation, we require (1) and (2) to 
be equal, or (1) – (2) = 0.



The derivation for the y and z components are exactly the same. So, the change in flux for our cube is

We set the equations equal to each other

Conservation of Mass Equation

= 0 by incompressibility



We proceed by recalling the formulaic expression for Newton’s Second Law

Conservation of Momentum Equation

By the formulaic definition of mass, this becomes

Acceleration is the time derivative of velocity, so the sum of forces acting on an object is equal to its the 
change in momentum. Because     represents the velocity components of a fluid, we can write  

Now, all we need to do is identify the forces acting upon our domain. We split them into internal and 
external forces. More precisely,

We are going to derive these in a scenario in which flow is only occurring in the x-direction.



The term          is referred to as a total or “material” derivative, comprised as the sum of two acceleration

components: local and convective

Local acceleration: The acceleration vector experienced by whatever fluid particle is residing at that location 
and time of interest. 

Convective acceleration: The acceleration a fluid particle experiences when it is transported from one 
location to another.

We have the following relation

Local and Convective Acceleration



Pressure is a force that results from applying stress to a fluid. The force is proportional to the product of 
applied pressure, denoted by  , and area of impact. Or,              . 

Conservation of Momentum – Pressure 

Computing the net force is practically identical to the net flux calculation we did earlier:

Pressure gradient influences 
convective acceleration!



In fluid mechanics, viscosity is the resistance to flow, or the fluid friction. For example, pouring a glass of 
water is a lot faster than pouring a glass of honey. This is because honey has a significantly larger viscosity! 
Viscosity is defined by shear (sliding) stresses, denoted by    . Shear forces are proportional to the product of 
shear stresses applied and the area of the surface. Or,               . We first sum every shear stress. 

Conservation of Momentum – Viscosity 

To find the shear force, we multiply each force by their respective surface.



Quickly, we assume that the only external force is the weight acting upon the fluid. So, the weight in the x-
direction is                       .  Now, we can sum up our forces and set it equal to our total derivative.

There are ways to relate the pressure and shear forces to the velocity of the fluid, called the constitutive 
equations for Newtonian flow. Substituting in these relations give us our final momentum equation.

Conservation of Momentum Equation 



“The challenge is to make substantial progress toward a mathematical theory which will unlock the secrets 
hidden in the Navier-Stokes equations. A fundamental problem in analysis is to decide whether smooth, 

physically reasonable solutions exist for the Navier–Stokes equations.”

Clay Mathematics Institute (2000)

The “Million-Dollar Problem”

The Navier-Stokes equations have been around since 1850, yet remains one of the greatest unsolved puzzles 
to this day. The Navier-Stokes equations work undisputably because it involves the fundamental laws of 
physics (Newton’s 2nd Law, Conservation of Mass/Momentum/Energy). However, finding a solution that 
works globally and in every situation has not been found. Why?

We want the solution to (1) exist, (2) be unique, and (3) be smooth. However, we do not even know if a 
solution exists to every initial condition!

One difficulty lies in predicting the solution. Fluids are prone to turbulence, leading to unexpected changes 
in velocity. So, even the tiniest changes in our initial condition may lead to turbulence and thus a large 
change in velocity, which fails to satisfy the smoothness of a solution.



There are ways to solve Navier-Stokes numerically, but it is a very tedious and involved process. Most 
numerical solutions involve “discretizing” the domain. The main 3 ways are

Other ways involve simplifying assumptions (for example, ignoring time in the problem).

Approaches to Solving Navier-Stokes

Finite volume
Most preferred

Works well with conservation laws
Finite difference Finite elements



Simulations of Navier-Stokes
The following website was used to generate the below simulation: 
https://www.outpan.com/app/44bdd9869c/interactive-fluid-simulation



1. Derivation of Mass-Continuity Equation: https://www.youtube.com/watch?v=v9Y_O74_fV0

2. Navier-Stokes Equation: https://www.youtube.com/watch?v=ERBVFcutl3M

3. Pressure & Shear Forces: https://www.tec-science.com/mechanics/gases-and-liquids/derivation-of-the-
navier-stokes-equations/

4. Constitutive equations for Newtonian Flow: https://www.youtube.com/watch?v=NjoMoH51UZc&t=12s

5. “Million Dollar Problem:” https://medium.com/@ases2409/navier-stokes-equations-the-million-dollar-
problem-78c01ec05d75

6. Simulations: https://www.outpan.com/app/44bdd9869c/interactive-fluid-simulation 
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