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Abstract
Vehicle insurance is one of the most fundamental and vital forms of coverage we need as it
enables us to have a cushion to fall back on if we ever need to pay expenses from serious
accidents. There are a lot of different companies that provide said insurance, so they must
compete and communicate strategically in order to succeed. One important way for companies
to achieve such success is by designing models to make correlations and predict interest in
vehicle insurance. So, throughout this project we will explore patterns with our data, apply
various methods of supervised learning to predict a consumer's interest in vehicle insurance,
and design methods of unsupervised learning to classify groups/similarities within our data.

Before we get into loading our data, we are going to look into the factors (columns) of our
dataset and what our response variable is (last column).

Factors:\ Gender: Gender of the consumer (Male or Female), printed as a String\ Age: Age of the
consumer, represented as an int\ Driving_License: Tells us whether the consumer has a driving
license or not. It is a binary variable, meaning that it returns 1 if they do have a driving license
and 0 if they do not.\ Region_Code: Tells us the region code of the consumer, displayed as a
float\ Previously_Insured: Much like our Driving_License column, this column is a binary variable
will tell us whether the consumer previously held any form of insurance. 1 means they have, 0
means they have not.\ Vehicle_Age: Categorizes the age of the vehicle into 3 possibilites: Less
than one year, 1-2 years, or more than two years. Represented as a String.\ Vehicle_Damage:
Tells us whether the vehicle has been damaged in the past. Shown as a String 'Yes' or 'No'.\
Annual_Premium: Shows us how much the consumer had to pay for insurance every year,
represented as a float.\ Policy_Sales_Channel: Different ways the company has reached out to
their consumers, expressed as a float. Examples of communication include, but are not limited
to: phone, mail, in person.\ Vintage: Tells us how long (in days) the consumer has been
associated with the company for, expressed as an int.

Response:\ Id: Id number of the consumer\ Response: Gives us a binary output. Returns 1 if the
consumer is interested in vehicle insurance and 0 if they are not.

Now, we are going to load and experiment with our data to see if we can find any correlations
between factors and response.
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Generating, Processing, and Visualizing Our
Data
Below, you will find a table looking at 381109 entries of all the previously mentioned columns
(here we only show the first 10 entries). The table was generated using a Pandas Dataframe and
was strategically chosen for easier indexing and slicing our data (for example, finding the top 
ratings can be achieved by slicing in our DataFrame).

id Gender Age Driving_License Region_Code Previously_Insured Vehicle_Age Vehicle_Damage

0 1 Male 44 1 28.0 0 > 2 Years Yes

1 2 Male 76 1 3.0 0 1-2 Year No

2 3 Male 47 1 28.0 0 > 2 Years Yes

3 4 Male 21 1 11.0 1 < 1 Year No

4 5 Female 29 1 41.0 1 < 1 Year No

5 6 Female 24 1 33.0 0 < 1 Year Yes

6 7 Male 23 1 11.0 0 < 1 Year Yes

7 8 Female 56 1 28.0 0 1-2 Year Yes

8 9 Female 24 1 3.0 1 < 1 Year No

9 10 Female 32 1 6.0 1 < 1 Year No

n

In [2]: import warnings
warnings.filterwarnings('ignore')

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
vehicle = pd.read_csv('train2.csv')   #load the dataset using Pandas
vehicle.head(10) #show the first 10 entries

Out[2]:

In [3]: vehicle.describe()
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id Age Driving_License Region_Code Previously_Insured Annual_Prem

count 381109.000000 381109.000000 381109.000000 381109.000000 381109.000000 381109.000

mean 190555.000000 38.822584 0.997869 26.388807 0.458210 30564.389

std 110016.836208 15.511611 0.046110 13.229888 0.498251 17213.155

min 1.000000 20.000000 0.000000 0.000000 0.000000 2630.000

25% 95278.000000 25.000000 1.000000 15.000000 0.000000 24405.000

50% 190555.000000 36.000000 1.000000 28.000000 0.000000 31669.000

75% 285832.000000 49.000000 1.000000 35.000000 1.000000 39400.000

max 381109.000000 85.000000 1.000000 52.000000 1.000000 540165.000

Observation: Males and Females are almost equally represented in our data. Only ~60,000
people are interested in vehicle insurance!

<seaborn.axisgrid.FacetGrid at 0x1d147789700>

Out[3]:

In [4]: rating_count = sns.histplot(data = vehicle, x = 'Gender', hue = 'Response')  #drafting

In [5]: sns.displot(data = vehicle, x = 'Age', kind = 'kde')

Out[5]:
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Observation: Shown above is a density plot, and we can easily find out that lower ages account
for most of our data. Mathematically speaking, the area underneath our curve is greatest from
our lowest age until around 33. Because this is a density plot, the area underneath our curve is
equal to 1!

<AxesSubplot:xlabel='Age', ylabel='Annual_Premium'>

In [6]: sns.scatterplot(data = vehicle, x = 'Age', y = 'Annual_Premium')

Out[6]:
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Observation: Almost every one pays between 0-100,000 annually for vehicle insurance.

<seaborn.axisgrid.FacetGrid at 0x1d14e0cdbb0>

In [7]: sns.catplot(data = vehicle, x = "Driving_License", y = "Age", kind = 'box')

Out[7]:
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Observation: 50% of people who do not have their driving license are betwen the age of 60-75
and 50% of people who do have their driving license are between the age of 25-50. Everyone
below the age of ~39 has their driving license.

<AxesSubplot:xlabel='Region_Code', ylabel='Count'>

In [8]: sns.histplot(data = vehicle, x = 'Region_Code', hue = 'Response')

Out[8]:
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Observation: There appears to be little to no correlation between location and interested in
vehicle insurace.

Fine-Tuning Our Code - Expressing Strings as
Numerical Data
Before we can train our models, we would like to include all of our variables in these methods of
supervised and unsupervised learning. Because some of these methods require calculations of
ints and floats, we need to find a way of converting our columns expressed as strings into
integers. Here we are going to apply the following changes:

(1) Make the 'Gender' column a binary variable, where 'Male' = 0 and 'Female' = 1\ (2) Express
the results of 'Vehicle_Age' as Strings, where <1 year = 1, 1-2 Years = 2, and >2 Years = 3\ (3)
Make the 'Vehicle_Damage' column a binary variable, where 'No' = 0 and 'Yes' = 1

In [9]: vehicle['Gender'] = vehicle['Gender'].replace({'Male': 0, 'Female': 1})
vehicle['Vehicle_Age'] = vehicle['Vehicle_Age'].replace({'< 1 Year': 1, '1-2 Year': 2,
vehicle['Vehicle_Damage'] = vehicle['Vehicle_Damage'].replace({'No': 0, 'Yes': 1})
vehicle
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id Gender Age Driving_License Region_Code Previously_Insured Vehicle_Age Vehicle

0 1 0 44 1 28.0 0 3

1 2 0 76 1 3.0 0 2

2 3 0 47 1 28.0 0 3

3 4 0 21 1 11.0 1 1

4 5 1 29 1 41.0 1 1

... ... ... ... ... ... ... ...

381104 381105 0 74 1 26.0 1 2

381105 381106 0 30 1 37.0 1 1

381106 381107 0 21 1 30.0 1 1

381107 381108 1 68 1 14.0 0 3

381108 381109 0 46 1 29.0 0 2

381109 rows × 12 columns

As you can see, all of our data is expressed numerically. Now we can begin the Supervised
Learning process!

Methods of Supervised Learning
In order to apply supervised learning, we must ask ourselves: How can we train our data to
predict interest in vehicle insurance based off of the information we are provided and why is this
an important element of machine learning? In this section, we are going to investigate 3
different approaches in tackling supervised learning. However, before we can begin, we need to
assess (1) What our training and test data is, (2) What our target data includes, and (3) Ways to
validate the data our machine model returns.

(1) Our training and test data are merely a partition of our original dataset. For example, we can
choose half of our data to be training data and the other half will be our test data. In our case,
we will choose to partition our dataset into 1% training data and 3% test data.\ (2) Intuitively, we
want our target data to be our responses because we want to predict whether someone is
interested in vehicle insurance with the provided information.\ (3) To determine how accurate
our supervised learning model was, we will implement a method (called score) that computes
how many times our model correctly predicted the correct rating.

Below you will find the code that constructs our training and test data.\ Please note that due
to the large size of our initial data, I had to choose a relatively small test size and train size
to keep it within the storage of my device.

Out[9]:
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Method 1: Logistic Regression using Gradient Descent
Our test and training data includes multiple variables (10 to be exact!) that may have little to no
significance on our target data (whether a consumer is interested in vehicle insurance). Because
of the plethora of variables, we have to apply a multi-variable that works for, say,  factors
within our dataset. In addition, we will have a binary outcume  because our responses are of
two possible choices: 1 (Yes) and 0 (No).

Before viewing the code, it is worth noting that the arithmetic behind our Logistic Regression
may seem complicated at first, so let us breakdown our process into multiple parts.

The Arithmetic behind Logistic Regression

Sigmoid Function

The Logistic Regression Model revolves around a bunch of different ideas/formulas. Of which,
the first one is the sigmoid function, which has a range of . So, we can use the sigmoid
function as a way of measuring probability. One of the most basic forms of the sigmoid function
is as such:

However, we are not looking to simply find a probability 0 or 1, we want to find the probability
of obtaining a probability of 0 or 1. Allow us to modify our sigmoid function to account for
said probability. We will denote the our probability  as a function of .

Here we amend two new variables to our sigmoid function: we denote  as our list of sample
vectors, stored as an  matrix that we want to operate on. Note that the dimension of 
depends on  sample and  factors (or columns in our dataset).  is a list of regression
coefficients. By the end of our logisitic regression, we want to find such a  that maximizes the
efficiency of our regression model. As a result, we are saying that the probability that we obtain
a probability of 1 is equivalent to the sigmoid function of .

Maximum Likehood Estimation (MLE)

Now, we want to apply the probability to our the whole dataset, or in particular, the
variables/columns we want to manipulate. We write the likelihood as such:

In [10]: import numpy as np
from sklearn.model_selection import train_test_split          #imports a module that a
X = vehicle.iloc[:, :-1].values                                  #creates a numpy arra
X = (X-np.mean(X,axis = 0))/np.std(X,axis = 0)
y = vehicle.iloc[:,-1].values                                  #creates a numpy array 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.01, train_size =

x

y

[0, 1]

σ(z) =
1

1 + e−z

P x

P(y = 1|x) = σ(~xβ) =
1

1 + e−~xβ

~x

N × p ~x

N p β

β

~x,β
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In short, we are taking the product of our probability function at each index of our test and
target data.

Loss Function

The loss function compares our progress from our current model to the expected output.
Mathematically speaking, the loss function calculates the average distance between our
prediction and its corresponding test data, which we often refer to as cross-entropy. Our loss
function is as such:

We use the natural logarithm of the MLE function to minimize our loss function. Keep in mind
that  and  is how we partition our probability. Lastly, to average our distance , we
have to take the summation and divide it by  iterations. So,

...in this case,  is our maximized MLE.

Gradient Descent

The final step of our logistic function is computing the gradient descent. Here, we compute the
gradient of our loss function with respect to . We can simplify some parts of our above
equations, while applying the gradient, to get

So, our gradient is the average of the product of our sample data and the difference between
our sigmoid function (of our sample data) and the test data (at index ). Finally, our gradient
descent method applies the gradient of our loss function to construct a new , which we will
denote as 

where  is our learning rate and  denotes the gradient.

Now, one of the easiest ways to apply this formula into code is by constructing a class and
having different methods perform different functions, which will be clarified in the code below.

P(y|X;β) =
N

∏
i=1

P(y(i)|x(i);β) =
N

∏
i=1

f(x(i);β)y(i) (1 − f(xi;β))(1−y(i)))

L(β) = −
N

∑
i=1

{y(i) ln(f(x(i);β))+ (1 − y(i)) ln(1 − f(x(i);β))}
1

N

y(i) (1 − y(i)) d

N

d̄ =
N

∑
i=1

d
1

N

d

β

=
N

∑
i=1

(σ(~x(i)β) − yi)~x
(i)

k

∂L(β)

∂βk

1

N

k

β

βk+1

βk+1 = βk − η∇L(βk)

η ∇

In [11]: class LogisticRegression():

    def __init__(self, learning_rate):
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        'This class initially takes in the learning rate as a float. This will be usef
        self.learning_rate = learning_rate
        
    def fit(self, data, y, n_iter):
        """Takes in our training data, test data, both in the form of a N x p numpy-ar
        amount of times we want to perform gradient descent is represented as an int. 
        strings that tells us our loss function after n iterations"""
        onecol = np.ones((data.shape[0], 1))               
        X = np.concatenate((onecol, data), axis = 1)   #our list of sample vectors, wh
        eta = self.learning_rate   
        beta  = np.zeros(np.shape(X)[1])   #creates beta, our list of our logistic coe

        for k in range(n_iter):
            dbeta = self.grad_loss(beta, X, y)     #applies the gradient function down
            beta = beta - (eta * dbeta)            #the gradient descent method!
            if k % 1000 == 0:                      #prints after 1000 iterations
                print("Our loss after", k + 1, "iterations returns: ", self.loss(beta,
        
        self.coeff = beta
        
    def predict(self, data):
        'Using our training data, this method aims to predict our response, returning 
        ones = np.ones((data.shape[0],1)) 
        X = np.concatenate((ones, data), axis = 1)   #our list of sample vectors, agai
        beta = self.coeff
        y_pred = np.round(self.sigmoid(np.dot(X,beta))).astype(int) #uses our defined 
        return y_pred
    
    def score(self, data, expected_y):
        'Given our training data and test data, we find how often our model correctly 
        'This method will return a float between 0 to 1, and is a ratio of correct pre
        ones = np.ones((data.shape[0],1))  
        X = np.concatenate((ones, data), axis = 1) #our list of sample vectors
        y_pred = self.predict(data)                #calls our predict method and store
        acc = np.mean(y_pred == expected_y)        #calculates the score!
        return acc
    
    def sigmoid(self, z):
        'Given an input z in the form of a numpy array, it will apply the sigmoid func
        return 1.0 / (1.0 + np.exp(-z))
    
    def loss(self,beta,X,y):
        'Given our coefficient beta (in the form of a numpy array) and our training an
        'to measure the current distance of our model and the expected output. Returns
        f_value = self.sigmoid(np.matmul(X,beta)) #the input of our sigmoid function i
        loss_value = np.log(f_value + 1e-10) * y + (1.0 - y)* np.log(1 - f_value + 1e-
        return -np.mean(loss_value)
                          
    def grad_loss(self,beta,X,y):
        'Given our cofficient beta and our training and test data, computes the gradie
        'the average of our gradient.'
        f_value = self.sigmoid(np.matmul(X,beta))                  
        gradient_value = (f_value - y).reshape(-1,1)*X  #reshapes our numpy array to a
        return np.mean(gradient_value, axis=0)

In [12]: sample = LogisticRegression(learning_rate = 1e-2)  #construct our LogisticRegression c
sample.fit(X_train, y_train, n_iter = 15000)       #apply the fit method to print our 
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Our loss after 1 iterations returns:  0.6914144198529503
Our loss after 1001 iterations returns:  0.33070195228874794
Our loss after 2001 iterations returns:  0.3030290816808205
Our loss after 3001 iterations returns:  0.2940568585130008
Our loss after 4001 iterations returns:  0.28970383199702554
Our loss after 5001 iterations returns:  0.2871746146357425
Our loss after 6001 iterations returns:  0.2855429430305545
Our loss after 7001 iterations returns:  0.28441388946089347
Our loss after 8001 iterations returns:  0.2835918039909893
Our loss after 9001 iterations returns:  0.28296949853997877
Our loss after 10001 iterations returns:  0.28248378217233244
Our loss after 11001 iterations returns:  0.2820952271750328
Our loss after 12001 iterations returns:  0.28177807898089907
Our loss after 13001 iterations returns:  0.28151486022849215
Our loss after 14001 iterations returns:  0.28129332012842606

0.8714248228811335

As we can see, our overall accuracy is ~87.1%, which means that is correctly predicted the
outcome of 87.1% of our sample data. For the model to be considered successful, I would say
that it needs at least 90% accuracy. So while the Logistic Regression model is somewhat reliable,
it needs some improvements to obtain a better accuracy. One question that we can raise is: are
there any hyperparameters that we can change to improve our model?

Can we improve our Logistic Regression Model?
Here, we are going to experiment with our LogisticRegression class and test 2 different
changes:\ (1) What if we increased the number of iterations to 75,000, 5 times our original
amount?\ (2) Will increasing our test size increase the model's overall accuracy?

Increasing the number of iterations

It is possible that increasing the number of iterations will allow the model to perform gradient
descent more often, and thus, hopefully further minimize our loss function. However, our
change in loss function significantly decreases after 2000 iterations, so it is expected that we will
see little to no changes in our loss, and thus, little to no changes in our score.

In [13]: sample.score(X_train, y_train)                         #Compute the overall performanc

Out[13]:

In [14]: more_iterations = LogisticRegression(learning_rate = 1e-2)
more_iterations.fit(X_train, y_train, n_iter = 75000)
display(more_iterations.score(X_train, y_train))
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Our loss after 1 iterations returns:  0.6914144198529503
Our loss after 1001 iterations returns:  0.33070195228874794
Our loss after 2001 iterations returns:  0.3030290816808205
Our loss after 3001 iterations returns:  0.2940568585130008
Our loss after 4001 iterations returns:  0.28970383199702554
Our loss after 5001 iterations returns:  0.2871746146357425
Our loss after 6001 iterations returns:  0.2855429430305545
Our loss after 7001 iterations returns:  0.28441388946089347
Our loss after 8001 iterations returns:  0.2835918039909893
Our loss after 9001 iterations returns:  0.28296949853997877
Our loss after 10001 iterations returns:  0.28248378217233244
Our loss after 11001 iterations returns:  0.2820952271750328
Our loss after 12001 iterations returns:  0.28177807898089907
Our loss after 13001 iterations returns:  0.28151486022849215
Our loss after 14001 iterations returns:  0.28129332012842606
Our loss after 15001 iterations returns:  0.2811046289527823
Our loss after 16001 iterations returns:  0.2809422671709793
Our loss after 17001 iterations returns:  0.28080131860283264
Our loss after 18001 iterations returns:  0.2806780071222325
Our loss after 19001 iterations returns:  0.2805693848653568
Our loss after 20001 iterations returns:  0.2804731173616544
Our loss after 21001 iterations returns:  0.2803873322554201
Our loss after 22001 iterations returns:  0.28031051071715735
Our loss after 23001 iterations returns:  0.2802414081200935
Our loss after 24001 iterations returns:  0.28017899516705624
Our loss after 25001 iterations returns:  0.28012241356109696
Our loss after 26001 iterations returns:  0.2800709421870126
Our loss after 27001 iterations returns:  0.28002397100205595
Our loss after 28001 iterations returns:  0.27998098065792115
Our loss after 29001 iterations returns:  0.27994152643675907
Our loss after 30001 iterations returns:  0.2799052254716754
Our loss after 31001 iterations returns:  0.27987174649423674
Our loss after 32001 iterations returns:  0.2798408015451088
Our loss after 33001 iterations returns:  0.2798121392234667
Our loss after 34001 iterations returns:  0.2797855391525936
Our loss after 35001 iterations returns:  0.2797608074141367
Our loss after 36001 iterations returns:  0.2797377727594302
Our loss after 37001 iterations returns:  0.2797162834483791
Our loss after 38001 iterations returns:  0.2796962045983609
Our loss after 39001 iterations returns:  0.27967741595006584
Our loss after 40001 iterations returns:  0.27965980997608375
Our loss after 41001 iterations returns:  0.27964329027272683
Our loss after 42001 iterations returns:  0.27962777018706947
Our loss after 43001 iterations returns:  0.2796131716402487
Our loss after 44001 iterations returns:  0.2795994241152459
Our loss after 45001 iterations returns:  0.27958646378310376
Our loss after 46001 iterations returns:  0.2795742327461225
Our loss after 47001 iterations returns:  0.2795626783802852
Our loss after 48001 iterations returns:  0.27955175276216454
Our loss after 49001 iterations returns:  0.27954141216800316
Our loss after 50001 iterations returns:  0.2795316166346613
Our loss after 51001 iterations returns:  0.27952232957376644
Our loss after 52001 iterations returns:  0.2795135174317504
Our loss after 53001 iterations returns:  0.27950514938958476
Our loss after 54001 iterations returns:  0.2794971970969553
Our loss after 55001 iterations returns:  0.2794896344363922
Our loss after 56001 iterations returns:  0.279482437313527
Our loss after 57001 iterations returns:  0.27947558347019147
Our loss after 58001 iterations returns:  0.2794690523175346
Our loss after 59001 iterations returns:  0.2794628247867262
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Our loss after 60001 iterations returns:  0.2794568831951408
Our loss after 61001 iterations returns:  0.27945121112620264
Our loss after 62001 iterations returns:  0.2794457933213068
Our loss after 63001 iterations returns:  0.2794406155824394
Our loss after 64001 iterations returns:  0.279435664684294
Our loss after 65001 iterations returns:  0.27943092829483446
Our loss after 66001 iterations returns:  0.2794263949033803
Our loss after 67001 iterations returns:  0.2794220537554073
Our loss after 68001 iterations returns:  0.2794178947933516
Our loss after 69001 iterations returns:  0.2794139086027885
Our loss after 70001 iterations returns:  0.27941008636343245
Our loss after 71001 iterations returns:  0.27940641980446884
Our loss after 72001 iterations returns:  0.2794029011637802
Our loss after 73001 iterations returns:  0.2793995231506841
Our loss after 74001 iterations returns:  0.27939627891183755
0.8715122889880171

Notice that by multiplying the total iterations by a factor of 5 only increases our overall score by
~0.0001, so our loss is decreasing at an infinitesimally small rate. Thus, increasing our iterations
has a marginally small impact on our accuracy.

Increasing our Test Size

Our original approach took only 1% training data and 3% test data out of our really expansive
dataset. It is very possible that giving our model more sample data will increase its overall
accuracy. So, we will define 2 new train and test variables and give it 5 times the training and
test data.

Our loss after 1 iterations returns:  0.6914144198529503
Our loss after 1001 iterations returns:  0.33070195228874794
Our loss after 2001 iterations returns:  0.3030290816808205
Our loss after 3001 iterations returns:  0.2940568585130008
Our loss after 4001 iterations returns:  0.28970383199702554
Our loss after 5001 iterations returns:  0.2871746146357425
Our loss after 6001 iterations returns:  0.2855429430305545
Our loss after 7001 iterations returns:  0.28441388946089347
Our loss after 8001 iterations returns:  0.2835918039909893
Our loss after 9001 iterations returns:  0.28296949853997877
Our loss after 10001 iterations returns:  0.28248378217233244
Our loss after 11001 iterations returns:  0.2820952271750328
Our loss after 12001 iterations returns:  0.28177807898089907
Our loss after 13001 iterations returns:  0.28151486022849215
Our loss after 14001 iterations returns:  0.28129332012842606
0.8750830913480041

Giving more test data was not too effective in increasing our accuracy (about a 0.4% increase),
but notably more effective than increasing the amount of iterations.

So, we can conclude that both methods can improve our overall score. Unfortunately, the
difference is not significant enough to render either of them effective.

In [15]: X_train2, X_test2, y_train2, y_test2 = train_test_split(X, y, test_size = 0.05, train_
more_iterations = LogisticRegression(learning_rate = 1e-2)
more_iterations.fit(X_train, y_train, n_iter = 15000)
display(more_iterations.score(X_train2, y_train2))
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Method 2: K-Nearest Neighbors Classification and
Cross-Validation
The K-Nearest Neighbors Classification aims to take a piece of data, and classify it based on that
"group" it is closest to. It identifies  neighbors closest to our test sample , and then computes
the probability of  belonging to a particular class.

Below, we will apply the KNeighborsClassifier submodule in sklearn, choosing 30 neighbors.

0.8659496327387198

What if we increased the number of neighbors to 150?

0.8716872212017843

It appears that increasing the number of neighbors will increase the overall accuracy of the KNN
Classification!

Now, we are going to apply 10-fold Cross-Validation, which divides our training data into 
smaller sets. In addition, it (1) estimates the skill (or accuracy) of our model on new data and (2)
helps us choose a  that best fits our KNN Classifier. This is achieved by testing on one fold and
training on the rest.

k n

n

In [16]: from sklearn.neighbors import KNeighborsClassifier
knn_30 = KNeighborsClassifier(n_neighbors = 30)
knn_30.fit(X_train, y_train)
knn_30.score(X_test,y_test)

Out[16]:

In [17]: knn_150 = KNeighborsClassifier(n_neighbors = 150)
knn_150.fit(X_train, y_train)
knn_150.score(X_train, y_train)

Out[17]:

k

k

In [18]: from sklearn.model_selection import cross_val_score

neighbor_list = list(range(1, 150, 25))
cv_scores = pd.DataFrame()
test_scores = pd.Series(dtype = 'float64')

'Performing our 10-fold Cross-Validation'
for k in neighbor_list:
    knn_150.set_params(n_neighbors = k) 
    scores = cross_val_score(knn_150, X_train, y_train, cv = 10, scoring = 'accuracy')
    cv_scores["K = " + str(k)] = scores
    test_scores[str(k)] = knn_150.score(X_test, y_test)

In [19]: display(cv_scores)
display(cv_scores.mean())
display(cv_scores.std())
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K = 1 K = 26 K = 51 K = 76 K = 101 K = 126

0 0.822552 0.868881 0.872378 0.871503 0.871503 0.871503

1 0.818182 0.861014 0.871503 0.871503 0.871503 0.871503

2 0.818182 0.866259 0.871503 0.873252 0.871503 0.871503

3 0.840770 0.874891 0.874891 0.872266 0.872266 0.872266

4 0.818898 0.867017 0.872266 0.873141 0.873141 0.872266

5 0.821522 0.871391 0.871391 0.873141 0.873141 0.872266

6 0.834646 0.868766 0.870516 0.871391 0.870516 0.871391

7 0.805774 0.868766 0.869641 0.870516 0.871391 0.871391

8 0.831146 0.867017 0.873141 0.871391 0.871391 0.871391

9 0.814523 0.866142 0.870516 0.871391 0.871391 0.871391

K = 1      0.822620
K = 26     0.868014
K = 51     0.871775
K = 76     0.871950
K = 101    0.871775
K = 126    0.871687
dtype: float64
K = 1      0.010277
K = 26     0.003623
K = 51     0.001498
K = 76     0.000944
K = 101    0.000831
K = 126    0.000402
dtype: float64

It seems like our average is almost the same as our KNN Classification. We find that our
accuracy increases from K = 1 to K = 51, though it seems to average out between K = 51 and K
= 126 neighbors. So, choosing K = 50 may be an appropriate choice.

0.8675236096537251

Lastly, we are going to view our Cross-Validation on a box-whisker plot.

<AxesSubplot:>

In [20]: knn_50 = KNeighborsClassifier(n_neighbors = 50)
knn_50.fit(X_train, y_train)
knn_50.score(X_test,y_test)

Out[20]:

In [21]: fig, ax = plt.subplots(dpi=100)
sns.boxplot(data =cv_scores)

Out[21]:
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The observations earlier are well reflected and visualized in the box-whisper plot.

Method 3: Decision Tree, Random Forest
Decision trees are unique ways of classifying our data. It establishes a more organized way of
showing how we predict values based off of certain parameters. To view an example of a
Decision Tree with our data, here is a "simple" version with a sample of 114.

In [22]: from sklearn import tree
tree_res = tree.DecisionTreeClassifier()

X_train3, X_test3, y_train3, y_test3 = train_test_split(X, y, test_size=0.0001, train_
tree_res.fit(X_train3, y_train3)
tree_res.score(X_train3, y_train3)

fig, ax = plt.subplots(dpi = 500)
tree.plot_tree(tree_res, class_names = ['Not Interested', 'Interested'], fontsize = 3)
plt.show()
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There are a plethora of classifications for such a small sample size. Now imagine a decision tree
with 100 times our sample, it would be very hard to see everything! Now, let's test the validity of
our Decision Tree.

0.7435897435897436

This is understandable as our sample size is relatively small. What is our accuracy if we choose
our normal training and test data?

1.0

We get an accuracy of 1, which is almost too perfect. Thus, we must raise some skepticism about
this model.

Random Forest
The Random Forest method aims to increase the strength of our existing decision tree model by
creating multiple decision trees simultaneously. Some factors that we include in the Random

In [23]: tree_res.score(X_test3, y_test3)

Out[23]:

In [24]: tree_res.fit(X_train, y_train)
tree_res.score(X_train, y_train)

Out[24]:
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Forest method include (1) the number of trees in our supposed 'forest', (2) the depth of each
tree, and (3) the ratio of samples we want, chosen at random.

Here we select 1500 trees in our forest and a depth of 5 layers in each tree.

0.8688352570828961

The Random Forest seems to provide a level of accuracy that is more consistent with our other
models, so it is safe to assume that Random Forest is more reliable in telling us whether a
consumer is interested in vehicle insurance.

Brief Aside: Comparing our Supervised Learning
Models
All 3 of our models were tasked to predict whether a consumer would be interested in vehicle
insurance. After testing each model, we got an accuracy between approximately 86-87.5%,
meaning that each model is equally as reliable in performing such a task. In order of most
accurate to least accurate:

1. Linear Regression (~87.5%) across higher iterations
2. K-Nearest Neighbors Classification (~87.1%) for optimal choice of neighbors
3. Random Forest (~86.9%)

Unsupervised Learning

Introduction
With Supervised Learning, we train a model to predict where any input falls into given training
and test data. Basically, we are telling the model what conclusions it should make. This was
achieved, as shown in our section on Supervised Learning, through classification, categorization,
and regression. Unsupervised Learning, on the other hand, does not predict. Instead, it runs
through our whole data and tries to find patterns. As a result, our inputs are the sole influence
on our unsupervised learning model. It does not use training and test data like Supervised
Learning does.

Unsupervised Learning is usually performed under two different procedures and we will try one
of each.

(1) Dimensionality Reduction: It compresses the amount of variables (or dimensions) within our
data while minimizing the loss of relevant information. For example, moving from 10

In [25]: from sklearn.ensemble import RandomForestClassifier
forest_res = RandomForestClassifier(n_estimators = 1500, max_samples = 0.5, max_depth 
forest_res.fit(X_train, y_train) 
forest_res.score(X_test, y_test)

Out[25]:
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dimensions to just 2 will give us 2 sets of 'principle' variables that keeps the most important
information out of our 10-dimensional data.\ We will use Principle Component Analysis
(PCA) - Covariance Matrix method for Dimensionality Reduction\ (2) Clustering: This aims
to group what we deem 'similar'. We take in a dataset and the unsupervised learning model will
group up our data into clusters that are closely related to each other.\ We will use the K-Means
Clustering Method

Method 1: Principal Component Analysis - Covariance
Matrix
As stated before, the Principal Component Analysis (PCA) method is a way of reducing the
dimensions we are working with. In particular our PCA maps from , where ,
and  is the amount of sample data we have. We are going to apply the Covariance Matrix
method, which will ultimately change our dataset into  dimensions and be symmetrical. In
addition, we are going to try 2 different tests:

(1) A dimension mapping from \ (2) A dimension mapping from

with  (our data size)

R
N×p → R

N×k k < p

N

k

R
N×4 → R

N×2

R
N×12 → R

N×2

N = 381109

In [26]: import numpy as np

new_data = vehicle.iloc[:, [2, 4, 10, 6]]     #choosing specific columns in our data -
display(new_data)

y_n = new_data.iloc[:,-1].values              
x_n = new_data.iloc[:, :-1].values
x_n = (x_n - np.mean(x_n, axis = 0))/np.std(x_n, axis = 0)    #standardizing our data!
display(x_n)           #show our new data

class CovarPCA():
    """Methods: __init__: Initializes our CovarPCA class
                fit: stores the top eigenvalues, the top eigenvectors of our Covarianc
                transform: returns the projection (or matrix multiplication) of our PC
    """
    
    def __init__(self, n_components = 2):
        '"Initializes our class, n_components is expressed as an int and tells us the 
        self.n_c = n_components
    
    
    def fit(self, X):
        """Inputs our data, computes the Covariance Matrix, top eigenvectors and eigen
           Nothing is returned; instead, everything is stored in the class
        """
        cov_mat = np.cov(X.T)                          #covariance matrix
        eig_val, eig_vec = np.linalg.eigh(cov_mat)     #eigenvectors and eigenvalues
        eig_val = np.flip(eig_val)                     
        eig_vec = np.flip(eig_vec, axis = 1)
        self.eig_values = eig_val[:self.n_c]           #chooses the top eigenvalues
        self.principle_components = eig_vec[:, :self.n_c] #chooses the top eigenvector
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Age Region_Code Vintage Vehicle_Age

0 44 28.0 217 3

1 76 3.0 183 2

2 47 28.0 27 3

3 21 11.0 203 1

4 29 41.0 39 1

... ... ... ... ...

381104 74 26.0 88 2

381105 30 37.0 131 1

381106 21 30.0 161 1

381107 68 14.0 74 3

381108 46 29.0 237 2

381109 rows × 4 columns

array([[ 0.33377727,  0.12178446,  0.74879538],
       [ 2.39675074, -1.76787876,  0.34244286],
       [ 0.52718104,  0.12178446, -1.52199808],
       ...,
       [-1.14898491,  0.27295751,  0.07950888],
       [ 1.88100737, -0.93642695, -0.96027549],
       [ 0.46271311,  0.19737098,  0.98782627]])
[0.34758746 0.33327918]

        self.variance_ratio = self.eig_values / eig_val.sum() # variance from each Pri
    
    def transform(self,X):
        '"Inputs our data and returns the projection matrix of our data on the Princip
        return np.matmul(X-X.mean(axis = 0),self.principle_components) 

pca = CovarPCA(n_components = 2)
pca.fit(x_n)
X_pca = pca.transform(x_n)
X_pca.shape

import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
figure = plt.figure(dpi=100)
plt.scatter(X_pca[:, 0], X_pca[:, 1],c = y_n, s=15, edgecolor='none', alpha=0.5,cmap=p
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.colorbar(); 

print(pca.variance_ratio)
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A few observations:\ (1) The color key is representative of our Vehicle_Age column, so we should
only see 3 colors out of the 10 that are listed. (1 = dark blue, 2 = brown, 3 = teal)\ (2) Our PC,
though 2-dimensional, neatly fits into a cube, which probably means that our data size is far too
large.\ (3) Something to note is that we only lost around a third of our data, meaning that our
model accounts for ~68% of our variance. The total variance was distributed almost evenly
among both Principal Components.\ (4) It is quite difficult to pin any sort of correlation between
Age, Region Code, Vintage, and Vehicle Age.

Now, let's try with our entire dataset.

[0.25930341 0.12173182]

In [28]: pca.fit(X)
X_pca2 = pca.transform(X)

import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
figure = plt.figure(dpi=100)
plt.scatter(X_pca2[:, 0], X_pca2[:, 1],c = y_n, s=15, edgecolor='none', alpha=0.5,cmap
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.colorbar(); 

print(pca.variance_ratio)
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Observations\ (1) The shape of our PC is a lot more different, it appears to be clumped into 3
large lines.\ (2) Again, we only expect to see 2 different colors as the color key accounts for our
Response column. We see most of our '1', or 'Yes' Responses on that top line. What exactly does
that mean? Unfortunately a lot of our '1' and '0' responses are blended together so there is
most likely a lack of correlation.\ (3) Our model only accounts for ~38% of our variation this
time, though this is probably due to the inclusion of every column as opposed to only including
4 in our previous model.\ (4) The variation ratio is approximately 2:1 between PC1 and PC2.

Method 2: Principle Component Analysis - K-Means
Clustering and Gaussian Mixture
Because we are merely importing the KMeans module, let's take a look at how K-Means
Clustering is actually computed.

First, what exactly does the K-Means method accomplish? Well, let's suppose we are given some
data that contains, say  samples. The K-Means algorithm will take in those  samples and tries
to classify and partition our data into  clusters. Normally, we fix a number of clusters that we
want within our data. Once we designate a , the K-Means method tries to find the cluster
centroid for each given cluster, serving as a "field" of reference where one piece of data does
and doesn't belong. Now, we assign the following formula that will assign every point a cluster
depending on the cluster centroid it is closest to:

n n

k

k
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...where  is the number of clusters we choose,  contains all of our sets,  is an indexed set of
, and  is the location of one of our cluster centroids. All of this together will minimize the

variance of our clusters.

Now we will get into loading the K-means submodule from sklearn and try to visualize our
clusters. Unfortunately, we will notice something abnormal when we try to apply this algorithm
to our data.

<matplotlib.legend.Legend at 0x1d14df75640>

min
S

K

∑
i=1

∑
x∈Si

|x − μi|
2

K S x

S μi

In [29]: from sklearn.cluster import KMeans                  #importing the KMeans submodule
kmeans = KMeans(n_clusters = 2, random_state=0)     #choosing 2 clusters to sort our d
y_km = kmeans.fit_predict(X)                         

In [30]: from sklearn.decomposition import PCA               #importing the PCA submodule
pca = PCA(n_components = 2)
X_pca = pca.fit_transform(X)

'Plotting and comparing our data between K-Means and our original data'
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
fig, (ax1, ax2) = plt.subplots(1, 2,dpi=150)

fig1 = ax1.scatter(X_pca[:, 0], X_pca[:, 1],c = y_km, s=15, edgecolor='none', alpha=0.
fig2 = ax2.scatter(X_pca[:, 0], X_pca[:, 1],c = y, s=15, edgecolor='none', alpha=0.5,c
ax1.set_title('K-means Clustering')
legend1 = ax1.legend(*fig1.legend_elements(), loc = "best", title = "Classes")
ax1.add_artist(legend1)
ax2.set_title('True Labels')
legend2 = ax2.legend(*fig2.legend_elements(), loc="best", title="Classes")
ax2.add_artist(legend2)

Out[30]:
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0.01731364356826951

As we see from above, our K-means seems to be lumped together, and while it may seem like
our clusters are well-defined, that is far from the truth. Our clusters should not be overlapping
as much as shown above. A new approach is (1) first setting our PCA dimensions to 2 and (2)
applying the K-means clustering after.

Also, note that we used another submodule from sklearn - metrics to tell us how accurate the K-
Means clustering is, ranging from 0 (not accurate at all) to 1 (perfect).

0.021424368033637353

This seemed to have slightly improved our model, but does not excuse the lumping of our
clusters. Now, we will use Gaussian Mixture, a defined method in the sklearn module.

In [31]: from sklearn import metrics
metrics.adjusted_rand_score(y_km, y)

Out[31]:

In [32]: yk_new = kmeans.fit_predict(X_pca)
metrics.adjusted_rand_score(yk_new, y)

Out[32]:

In [33]: from sklearn.mixture import GaussianMixture
gm = GaussianMixture(n_components = 3,random_state=0)
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0.026041097519500497

As you can see, the Gaussian Mixture is a more appropriate choice for forming clusters within
our data, but its accuracy is still very subpar. The last approach, as shown below, is an attempt
of removing binary variables within our data to see whether it improves or worsens our model.

0.00038260871953359557

Unfortunately, it seems as if removing said columns actually lowered the accuracy of our model.

Why are we getting such low accuracy with K-Means
Classification?
Though we are uncertain of the precise cause, there are a few reasons that may explain such a
phenomenon.\ (1) We are dealing with binary data.\ (2) We have too many dimensions. As we
have more dimensions in our data (12 in our case), the distance is rendered closer and closer to
each other that can result in lumping of clusters.\ (3) Our data is too large. Keep in mind that we
have 381109 samples! It may be difficult to properly cluster that much data.\ (4) The data is just
not suitable for the K-Means method. The K-means method performs better when a lot of our
variables share similarities and range of values. As we have shown with our data, there are not
too many strong correlations among our variables so it becomes more difficult to form clusters
among them. So, we say that our data is irregular.\ As a reminder, this is mere speculation!

Can we do anything to make our data work with K-Means
Classification?
It is very difficult to make this form of data work with our K-Means Classification, especially
given the fact that our data is irregular. One possible solution is to try and apply PCA and then
use K-Means. Though it was shown to work in our case, our accuracy only went up by ~0.004,
which is practically insignificant. Another approach would have us be more selective with the
variables we choose, like we did in Method 1. If none of these seem to work, it may be best to
try another method of unsupervised learning.

Conclusion
Within this report, we have achieved the following:

y_gm = gm.fit_predict(X)
metrics.adjusted_rand_score(y_gm, y)

Out[33]:

In [34]: 'Dropping every column containing binary data (returns either 0 or 1)'
simpler = vehicle.drop(columns = ['Gender', 'Driving_License', 'Previously_Insured', '
simpler = (simpler - np.mean(simpler, axis = 0))/np.std(simpler ,axis = 0)
y_km2 = kmeans.fit_predict(simpler)
pca = PCA(n_components = 2)
X_pca2 = pca.fit_transform(simpler)
metrics.adjusted_rand_score(y_km2, y)                                 

Out[34]:
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1. Explored different parts of our data, seeking any correlations between one or two variables.
Said correlations were visualized through curves, boxplots, and histograms.

2. Looked at various ways we can predict a consumer's interest in vehicle insurance. The most
successful model was Logistic Regression + Gradient Descent (~87.5% accuracy)

3. Investigated different methods of unsupervised learning and tried to explain the anamolies
after applying Principal Component Analysis and K-Means Clustering to our data.

Overall, both Supervised Learning and Unsupervised Learning are promising ways of training a
model and finding patterns within our data. However, some ways benefit more than others
depending on the type of data we are provided. Hopefully these observations come as
important takeaways from our analysis.
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