
Ryan Gomberg - Recommendation System Project
May 18, 2025

1 Introduction, Preprocessing, and EDA

The Dataset can be found through the website: https://www.kaggle.com/datasets/

satpreetmakhija/netflix-movies-and-tv-shows-2021/data

This �le is accessible through my GitHub: https://github.com/ryangomberg?tab=repositories

1.1 Introduction to the Dataset, Goals

� We are using the net�ix_db.csv and net�ix_description.csv datasets from Kaggle
� In total, there are 5967 unique entries, 5897 unique movies, and 14 di�erent features
� While this is not an exhaustive list, some features are

� Description: o�ers a text description of each movie.
� Genres: provides 1-3 categories for each movie.
� Rating: the movie's IMDb rating.
� Other miscellaneous features: Cast, Production Country, Release Date, Duration

� The general goals of this project are to:
� Apply exploratory data analysis to identify and distributions and conclusions.
� Use cosine similarity to recommend the top 3 movies based on movie description.
� Build a recurrent neural network to recommend the top 3 movies based on movie history.

1.2 Preprocessing

The following implementations were made to the original dataset to prepare ourselves for exploratory
data analysis and deploying our recommendation system models.

1. Merged net�ix_db and net�ix_description to a single dataset.
2. Rewrite IMDb scores as �oats and �ll missing values with the average score.
3. Drop missing values in the `Title' and `Date Added' columns.
4. Sort titles chronologically in the `Date Added' column (done in RNN Model).

[37]: import os

import sys

import subprocess

import warnings

warnings.filterwarnings("ignore")

subprocess.check_call([sys.executable, "-m", "pip", "install", "tensorflow"],

stdout=subprocess.DEVNULL,

stderr=subprocess.DEVNULL)

subprocess.check_call([sys.executable, "-m", "pip", "install", "torch"],

stdout=subprocess.DEVNULL,

stderr=subprocess.DEVNULL)

1

https://www.kaggle.com/datasets/satpreetmakhija/netflix-movies-and-tv-shows-2021/data
https://www.kaggle.com/datasets/satpreetmakhija/netflix-movies-and-tv-shows-2021/data
https://github.com/ryangomberg?tab=repositories

import pandas as pd

import numpy as np

from sklearn.preprocessing import LabelEncoder, MinMaxScaler

import torch

import torch.nn as nn

import tensorflow as tf

n = pd.read_csv('netflix_db.csv')

ndes = pd.read_csv('netflix_description.csv')

df = n.merge(ndes)

df = df.reset_index(drop=True)

Rewriting IMDb Scores as floats

def score_to_float(x):

if x == '10.0/10':

return 10.0

else:

return(float(str(x)[0:3]))

df['Imdb Score'] = df['Imdb Score'].apply(score_to_float)

Set missing values to the mean score

df['Imdb Score'] = df['Imdb Score'].fillna(df['Imdb Score'].mean())

1.3 Exploratory Data Analysis

We will explore 3 graphs within our aggregated data. The �rst of which is the distribution of IMDb
ratings. The submodules seaborn and matplotlib were used for visualization.

[38]: import seaborn as sns

import matplotlib.pyplot as plt

IMDb Score Distribution

bins = np.arange(0, 11, 1)

df['Rating Bin'] = pd.cut(df['Imdb Score'], bins=bins, right=False)

rating_counts = df['Rating'].value_counts()

plt.figure(figsize=(10,6))

sns.histplot(df['Imdb Score'], bins=bins, kde=True, edgecolor='black')

plt.title('IMDb Rating Distribution')

plt.xlabel('IMDb Score')

plt.ylabel('Density')

plt.xticks(bins)

plt.grid(True)

plt.show()

2

Rating counts

plt.figure(figsize=(10,6))

sns.barplot(x=rating_counts.index, y=rating_counts.values, palette="viridis")

plt.title("Distribution of TV Ratings")

plt.xlabel("TV Rating")

plt.ylabel("Count")

plt.xticks(rotation=45)

plt.grid(axis='y')

plt.show()

Release year counts

df['Release Date'] = pd.to_numeric(df['Release Date'], errors='coerce')

year_counts = df['Release Date'].dropna().astype(int).value_counts().sort_index()

plt.figure(figsize=(12,6))

sns.barplot(x=year_counts.index, y=year_counts.values, color='skyblue')

plt.title("Number of Releases per Year")

plt.xlabel("Release Year")

plt.ylabel("Count")

plt.xticks(rotation=45)

plt.grid(axis='y')

plt.show()

3

1.3.1 IMDb Ratings

� The majority of IMDb ratings fall within 4-9, with 6-7 taking up roughly 30% of our data and

4

5-8 taking up roughly 85% of our data.

� Ratings of 0-3 and 9-10 being exceptionally rare.

� This re�ects the standards of most IMDB ratings, with 7/10 as the ` `most average� score.

1.3.2 Distribution of TV Ratings

� Almost half of the movies are rated for mature audiences only.
� Roughly 4300 movies have an age restriction of 13+.
� It is likely that this dataset is not tailored towards family/children's �lms (i.e. animated �lms).

1.3.3 Number of Releases per Year

� As expected, almost all �lms are released after 1995, with roughly 80% of them released after
2014.

� Almost half of the movies in this dataset were released between 2018-2020.

2 Model Implementations

2.1 Model 1: Cosine Similarity

Given two vectors,
−→
A ,

−→
B , the similarity between them is given by the cosine of the angle separating

them

cos θ =

−→
A ·

−→
B

||
−→
A ||||

−→
B ||

.

Since −1 ≤ cos θ ≤ 1, similarity is measured by -1 to 1, where 1 indictes a perfect correlation and 0
indicates no correlation. This is one way of implementing recommendation systems: given a piece

of data
−→
A , compute the cosine similarity between candidate data entries

−→
B and output the three

that are closest to 1.

In context of our dataset, we will use cosine similarity based on the following factor:

� Content-based �ltering: Given a movie description, output the top 3 movie recommenda-
tions whose description closely matches the inputted one.

We will use our newfound recommendation system to �nd 3 movies whose description is most similar
to Zoo.

[34]: # TF-IDF Vectorization of Descriptions

tfidf = TfidfVectorizer(stop_words='english', max_features=300)

tfidf_matrix = tfidf.fit_transform(df['Description'])

Compute cosine similarity matrix of Descriptions

cos_sim = cosine_similarity(tfidf_matrix)

Recommendation function - input title of movie in dataset

and outputs top 3 movies based on the given cos_sim matrix

def recommend_cosine_description(title, top_k = 3):

Find the index of the movie with the given title

5

idx = df[df['Title'] == title].index

if len(idx) == 0:

return f"Title '{title}' not found."

idx = idx[0]

Looking out for indexing errors

if idx >= len(cos_sim):

return f"Index {idx} is out of bounds for similarity matrix of size

↪→{len(cos_sim)}"

Rank movies by similarity

sim_scores = list(enumerate(cos_sim[idx]))

sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)

Pick top 3 movies (excluding itself)

top_indices = [i for i, _ in sim_scores[1:top_k+1]]

return df.iloc[top_indices][['Title', 'Genres', 'Imdb Score']]

print("Cosine recommendations:")

print(recommend_cosine_description("Zoo"))

Cosine recommendations:

Title \

592 Being Napoleon

1806 Ghosts of War

1472 El señor de los Cielos

Genres \

592 Documentaries

1806 Horror Movies

1472 Crime TV Shows, International TV Shows, Spanish-Language TV Shows

Imdb Score

592 5.5

1806 5.4

1472 6.9

[35]: print(df[df['Title'] == 'Being Napoleon']['Description'])

print(df[df['Title'] == 'Ghosts of War']['Description'])

print(df[df['Title'] == 'El señor de los Cielos']['Description'])

592 On the 200th anniversary of the Battle of Waterloo, thousands of

enthusiasts reenact the epic clash. But there can only be one Napoleon.

Name: Description, dtype: object

1806 Five, battle-worn Allied soldiers guarding a chateau previously occupied

by Nazis start experiencing unexplained and terrifying supernatural horrors.

Name: Description, dtype: object

1472 Only Aurelio Casillas can fill Pablo Escobar's shoes and become Mexico's

6

biggest drug trafficker of the '90s.

Name: Description, dtype: object

Overall, it appears that the recommendation system is partially successful.

� The movie El señor de los Cielos is very similar to Zoo, mainly thematically and with respect
to the plot.

� Ghosts of War can be acquainted with Zoo in the sense of psychological trauma.

� Being Napoleon is entirely unrelated with Zoo, but might have been recommended as a false
positive due to some syntax overlap (i.e. battle, clash).

2.2 Model 2: Recurrent Neural Networks (RNNs)

Recurrent neural networks are neural networks well-suited for sequential data, storing data from
previous time-steps and learning from temporal patterns.

The structure is almost identical to a typical neural network, with the exception of a recurrent weight
U , repeating activation functions while using the same weights and biases W , B (over multiple time
steps) in each hidden layer.

Additionally, we choose the number of epochs, or number of iterations of forward-feeding and
backpropagation, to balance computational cost while minimizing our loss function.

For out dataset, RNNs are appropriate if we select a �history� of movies the user has watched.
Through this, the neural network will output 3 movies to recommend with these optimized weights
and biases.

We propose the following RNN structure:

� Input Layer: 5 neurons, or the last 5 movies the user has watched

� Embedding Layer: 32 neurons, mapping categorical data into a vector of 32 integers.

� Hidden Layer: 64 neurons, GRU (Gated Recurrent Unit). Uses sigmoid and tanh activation
functions as transitions

� Output Layer: 3 neurons, uses softmax (logits) as the activation function, predicting the 3
most likely movie to recommend

� Since we are dealing with a multi-classi�cation problem, we impose a cross-entropy loss func-

tion

� We run over 5 sequences (as implied by input layer) and 30 epochs to achieve a desirable,
minimal loss function

Relevant submodules: LabelEncoder, torch, nn, TensorFlow, defaultdict

[]: # RNN-Based Recommender

Drop missing rows and sort titles chronologically

from collections import defaultdict

df2 = df.dropna(subset=['Title', 'Date Added'])

df2['Date Added'] = pd.to_datetime(df2['Date Added'])

df2 = df2.sort_values(['Title', 'Date Added'])

7

Set 5 sequences for the RNN model

user_sequences = defaultdict(list)

for i, row in df2.iterrows():

user_sequences[row['Production Country']].append(row['Title'])

sequences = [seq for seq in user_sequences.values() if len(seq) >= 5]

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

all_titles = [title for seq in sequences for title in seq]

le.fit(all_titles)

inputs, targets = [], []

seq_len = 5

for seq in sequences:

seq = le.transform(seq)

for i in range(1, len(seq)):

prev = seq[max(0, i - seq_len):i]

prev = [0] * (seq_len - len(prev)) + list(prev)

inputs.append(prev)

targets.append(seq[i])

inputs = torch.tensor(inputs, dtype=torch.long)

targets = torch.tensor(targets, dtype=torch.long)

Neural Network Architecture: Size of layers

vocab_size = len(le.classes_)

embed_dim = 32

hidden_dim = 64

Neural Network Architecture: Defining Activation Functions

embedding = nn.Embedding(vocab_size, embed_dim)

rnn = nn.GRU(embed_dim, hidden_dim, batch_first=True)

fc = nn.Linear(hidden_dim, vocab_size)

Training Setup

params = list(embedding.parameters()) + list(rnn.parameters()) + list(fc.

↪→parameters())

optimizer = torch.optim.Adam(params, lr=0.01)

loss_fn = nn.CrossEntropyLoss()

Training model over 30 epochs

for epoch in range(30):

optimizer.zero_grad()

8

x_embed = embedding(inputs)

_, h = rnn(x_embed)

logits = fc(h.squeeze(0))

loss = loss_fn(logits, targets)

loss.backward()

optimizer.step()

if (epoch + 1) % 5 == 0:

print(f"Epoch {epoch+1}, Loss: {loss.item():.4f}")

Use the finalized model to output top 3 movie recommendations

def recommend_rnn(history_titles, top_k=3):

history_enc = le.transform([t for t in history_titles if t in le.classes_])

history_enc = [0] * (seq_len - len(history_enc)) +

↪→list(history_enc)[-seq_len:]

x = torch.tensor([history_enc])

with torch.no_grad():

x_embed = embedding(x)

_, h = rnn(x_embed)

logits = fc(h.squeeze(0))

top = torch.topk(logits, top_k).indices

recommended_titles = le.inverse_transform(top.numpy().flatten())

Get genres and imdb scores from DataFrame

results = df[df['Title'].isin(recommended_titles)][['Title', 'Genres', 'Imdb

↪→Score']]

return results.drop_duplicates(subset='Title').reset_index(drop=True)

For simplicity, we select our viewing history as the �rst 5 movies in the dataset.

[39]: print("History: ['(Un)Well', '#Alive', '#AnneFrank - Parallel Stories',

↪→'#blackAF', '#cats_the_mewvie']")

print(recommend_rnn(['(Un)Well', '#Alive', '#AnneFrank - Parallel Stories',

↪→'#blackAF', '#cats_the_mewvie']))

History: ['(Un)Well', '#Alive', '#AnneFrank - Parallel Stories', '#blackAF',

'#cats_the_mewvie']

Title \

0 48 Christmas Wishes

1 March Comes in Like a Lion

2 Naruto

Genres Imdb Score

0 Children & Family Movies, Comedies 3.8

1 Anime Series, International TV Shows, Teen TV Shows 8.4

2 Anime Series, International TV Shows 8.3

9

� As expected, the loss function starts o� large over the �rst few iterations of the neural network.
� As we repeatedly run through and backpropagate, the loss function appears to be readily
converging to some minimum.

� The viewing history primarily falls into international movies, documentaries, and comedies.
� The recommended movies share some of the genres in our viewing history. While we did
not empirically measure the accuracy of our model, we can say there is some success in
recommending new movies.

3 Conclusion

Throughout this project, we have:

� Motivated the need for recommendation systems.

� Introduced the dataset and necessary preprocessing techniques.

� Performed exploratory data analysis on di�erent features in our data.

� Used cosine similarity to recommend movies with similar descriptions.

� Deployed a recurring neural network to recommend movies given a user's viewing history
(retrospective technique).

If time allowed, I would have liked to

� Learn more about the general dataset through visualization techniques

� Explore ways to improve the cosine similarity recommendation system (i.e. advanced word
embeddings such as Word2Vec).

� Apply cosine similarity based on di�erent features in the dataset (i.e. Rating, Genres).

� Find ways to test accuracy in our recurrent neural network and do more tinkering with the
hidden/output layers.

10

	Introduction, Preprocessing, and EDA
	Introduction to the Dataset, Goals
	Preprocessing
	Exploratory Data Analysis
	IMDb Ratings
	Distribution of TV Ratings
	Number of Releases per Year

	Model Implementations
	Model 1: Cosine Similarity
	Model 2: Recurrent Neural Networks (RNNs)

	Conclusion

