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When applicable, I will provide my rationale from a mathematical and practical approach.



The Need for Recommendation Systems
• The rapid growth of data collection has given rise to a new methodology 

of analyzing information and developing more efficient systems. 

• As a result, recommendation systems have become increasingly 
prominent in filtering data, improving the quality of search results, and 
providing items that are more relevant to the user.

• Generally, recommendation systems are designed to predict a rating or 
preference that a user would associate with an item.

• Large consumer dependent companies – Amazon, Spotify, Netflix, 
YouTube – all require effective recommendation systems for successful 
business.

• In this project, we will provide two different approaches of 
recommendation systems to a dataset featuring thousands of movies 
available on Netflix (as of 2021) alongside other important features such 
as text descriptions, genres, and IMDb scoring.



Introduction to the Dataset, Goals

• We are using the netflix_db.csv and netflix_description.csv datasets from Kaggle.

• In total, there are 5967 unique entries, 5897 unique movies, and 14 different features.

• While this is not an exhaustive list, some features are
• Description: offers a text description of each movie.

• Genres: provides 1-3 categories for each movie (i.e. Comedies, Drama, Horror).

• IMDb Rating: the movie’s IMDb rating.

• Other miscellaneous features: Cast, Production Country, Release Date, Duration.

• The general goals of this project are to:
• Apply exploratory data analysis to identify and distributions and conclusions.

• Use cosine similarity to recommend the top 3 movies based on movie description.

• Build a recurrent neural network to recommend the top 3 movies based on movie history.



Data Preprocessing
The following implementations were made to the 
original dataset to prepare ourselves for exploratory data 
analysis and deploying our recommendation system 
models.

1. Merged netflix_db and netflix_description to a 
single dataset.

2. Rewrite IMDb scores as floats and fill missing values 
with the average score.

3. Drop missing values in the ‘Title’ and ‘Date Added’ 
columns.

4. Sort titles chronologically in the ‘Date Added’ 
column.

df2 is an expanded database (additional columns) used 
in the RNN model.



Exploratory Data Analysis
We will explore 3 graphs within our aggregated data. The first of which is the distribution of IMDb 
ratings. The submodules seaborn and matplotlib were used for visualization.

The majority of IMDb ratings 
fall within 4-9, with 

• 6-7 taking up roughly 30% 
of our data.

• 5-8 taking up roughly 85% 
of our data.

• Ratings of 0-3 and 9-10 
being exceptionally rare.

This reflects the standards of 
most IMDB ratings, with 7/10 
as the “most average” score.



Exploratory Data Analysis

• Almost half of the movies 
are rated for mature 
audiences only.

• Roughly 4300 movies 
have an age restriction of 
13+.

• It is likely that this dataset 
is not tailored towards 
family/children’s films 
(i.e. animated films).



Exploratory Data Analysis

• As expected, almost 
all films are released 
after 1995, with 
roughly 80% of them 
released after 2014.

• Almost half of the 
movies in this dataset 
were released between 
2018-2020.



Model 1: Cosine Similarity
Given two vectors A, B, the similarity between them is given by the cosine of the angle separating them:

Since                           , similarity is measured by -1 to 1, where 1 indicates a perfect correlation and 0 
indicates no correlation. This is one way of implementing recommendation systems: given a piece of 
data A, compute the cosine similarity between candidate data entries B and output the three that are 
closest to 1. 

In context of our dataset, we will use cosine similarity based on the following factor:
• Content-based filtering: Given a movie description, output the top 3 movie recommendations 

whose description closely matches the inputted one.



Model 1: Cosine Similarity
We will be importing the TfidfVectorizer and 
cosine_similarity submodules from scikit-learn. 
•  TfidfVectorizer converts strings to vectors stored in 

data.
•  cosine_similarity constructs a symmetric, similarity 

matrix containing the similarity index between all 
candidate movies. For instance, the top 3 movies could 
have a similarity matrix of the form:

• We will use our newfound recommendation system to 
find 3 movies whose description is most similar to Zoo.



Model 1: Cosine Similarity
Input

Zoo description: A drug dealer starts having doubts about 
his trade as his brother, his client, and two rappers from the 
slums each battle their own secret addictions.

Recommendations

Being Napoleon description: On the 200th anniversary of the 
Battle of Waterloo, thousands of enthusiast reenact the epic 
clash. But there can only be one Napoleon.

Ghosts of War description: Five, battle-worn Allied soldiers 
guarding a chateau previously occupied by Nazis start 
experiencing unexplained and terrifying supernatural 
horrors.

El señor de los Cielos description: Only Aurelio Casillas can 
fill Pablo Escobar’s shoes and become Mexico’s biggest drug 
trafficker of the ’90s.



Model 1: Cosine Similarity
Overall, it appears that the recommendation system is partially successful.

The movie El señor de los Cielos is very similar to Zoo, mainly thematically and with respect to the plot.

Ghosts of War can be acquainted with Zoo in the sense of psychological trauma.

Being Napoleon is entirely unrelated with Zoo, but might have been recommended as a false positive 
due to some syntax overlap (i.e. battle, clash). 



Model 2: Recurrent Neural Networks (RNNs)

.    .    .

.    .    .

Recurrent neural networks are neural 
networks well-suited for sequential data, 
storing data from previous time-steps and 
learning from temporal patterns.

The structure is almost identical to a typical 
neural network, with the exception of a 
recurrent weight U, repeating activation 
functions while using the same weights and 
biases W, B (over multiple time steps) in each 
hidden layer.

Additionally, we choose the number of epochs, 
or number of iterations of forward-feeding 
and backpropagation, to balance 
computational cost while minimizing our loss 
function. 

For out dataset, RNNs are appropriate if we 
select a “history” of movies the user has 
watched. Through this, the neural network 
will output 3 movies to recommend with 
these optimized weights and biases.



Model 2: Recurrent Neural Networks (RNNs)
We propose the following RNN structure:
• Input layer: 5 neurons, or the last 5 movies the user 

has watched.
• Embedding layer: 32 neurons, mapping categorical 

data into a vector of 32 integers.
• Hidden layer: 64 neurons, GRU (Gated Recurrent 

Unit). Uses sigmoid and tanh activation functions as 
transitions.

• Output layer: 3 neurons, uses softmax (logits) as the 
activation function, predicting the 3 most likely 
movie to recommend.

• Since we are dealing with a multi-classification 
problem, we impose a cross-entropy loss function.

• We run over 5 sequences (as implied by input layer) 
and 30 epochs to achieve a desirable, minimal loss 
function.

• In total, there are 67,124 parameters!

Relevant submodules: LabelEncoder, torch, nn, 
TensorFlow, defaultdict.



Model 2: Recurrent Neural Networks (RNNs)
For simplicity, we select our viewing history as the 
first 5 movies in the dataset.

• As expected, the loss function starts off large 
over the first few iterations of the neural 
network.

• As we repeatedly run through and 
backpropagate, the loss function appears to be 
steadily converging to some minimum.

• The viewing history primarily falls into 
international movies, documentaries, and 
comedies.

• The recommended movies share some of the 
genres in our viewing history. While we did not 
empirically measure the accuracy of our model, 
we can say there is some success in 
recommending new movies.

Output of Neural Network

Loss Function over 30 epochs 

Viewing History



Conclusion
Throughout this presentation, we have:
• Motivated the need for recommendation systems.
• Introduced the dataset and necessary preprocessing techniques.
• Performed exploratory data analysis on different features in our data.
• Used cosine similarity to recommend movies with similar descriptions.
• Deployed a recurring neural network to recommend movies given a user’s viewing history 

(retrospective technique).

If time allowed, I would have liked to:
• Learn more about the general dataset through visualization techniques.
• Explore ways to improve the cosine similarity recommendation system (i.e. advanced word 

embeddings such as Word2Vec).
• Apply cosine similarity based on different features in the dataset (i.e. Rating, Genres).
• Find ways to test accuracy in our recurrent neural network and do more tinkering with the 

hidden/output layers.



Miscellaneous
The dataset can be found through the website:
https://www.kaggle.com/datasets/satpreetmakhija/netflix-movies-and-tv-shows-2021/data

The .ipynb file (Jupyter Notebook), containing the code to generate everything in this presentation, 
will eventually be accessible through my GitHub:

https://github.com/ryangomberg?tab=repositories

The recurrent neural network diagram was mostly inspired by An Introduction to Statistical Learning.

https://www.kaggle.com/datasets/satpreetmakhija/netflix-movies-and-tv-shows-2021/data
https://github.com/ryangomberg?tab=repositories
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