
Recommendation System
Case Study: Netflix Dataset

Ryan Gomberg

May 18, 2025

All diagrams and plots are my own.

Contents
1. Motivation – Why do we need recommendation systems?

2. Introduction to the Dataset, Goals

3. Data Preprocessing

4. Exploratory Data Analysis

5. Cosine Similarity

6. Recurrent Neural Network

7. Conclusion

When applicable, I will provide my rationale from a mathematical and practical approach.

The Need for Recommendation Systems
• The rapid growth of data collection has given rise to a new methodology

of analyzing information and developing more efficient systems.

• As a result, recommendation systems have become increasingly
prominent in filtering data, improving the quality of search results, and
providing items that are more relevant to the user.

• Generally, recommendation systems are designed to predict a rating or
preference that a user would associate with an item.

• Large consumer dependent companies – Amazon, Spotify, Netflix,
YouTube – all require effective recommendation systems for successful
business.

• In this project, we will provide two different approaches of
recommendation systems to a dataset featuring thousands of movies
available on Netflix (as of 2021) alongside other important features such
as text descriptions, genres, and IMDb scoring.

Introduction to the Dataset, Goals

• We are using the netflix_db.csv and netflix_description.csv datasets from Kaggle.

• In total, there are 5967 unique entries, 5897 unique movies, and 14 different features.

• While this is not an exhaustive list, some features are
• Description: offers a text description of each movie.

• Genres: provides 1-3 categories for each movie (i.e. Comedies, Drama, Horror).

• IMDb Rating: the movie’s IMDb rating.

• Other miscellaneous features: Cast, Production Country, Release Date, Duration.

• The general goals of this project are to:
• Apply exploratory data analysis to identify and distributions and conclusions.

• Use cosine similarity to recommend the top 3 movies based on movie description.

• Build a recurrent neural network to recommend the top 3 movies based on movie history.

Data Preprocessing
The following implementations were made to the
original dataset to prepare ourselves for exploratory data
analysis and deploying our recommendation system
models.

1. Merged netflix_db and netflix_description to a
single dataset.

2. Rewrite IMDb scores as floats and fill missing values
with the average score.

3. Drop missing values in the ‘Title’ and ‘Date Added’
columns.

4. Sort titles chronologically in the ‘Date Added’
column.

df2 is an expanded database (additional columns) used
in the RNN model.

Exploratory Data Analysis
We will explore 3 graphs within our aggregated data. The first of which is the distribution of IMDb
ratings. The submodules seaborn and matplotlib were used for visualization.

The majority of IMDb ratings
fall within 4-9, with

• 6-7 taking up roughly 30%
of our data.

• 5-8 taking up roughly 85%
of our data.

• Ratings of 0-3 and 9-10
being exceptionally rare.

This reflects the standards of
most IMDB ratings, with 7/10
as the “most average” score.

Exploratory Data Analysis

• Almost half of the movies
are rated for mature
audiences only.

• Roughly 4300 movies
have an age restriction of
13+.

• It is likely that this dataset
is not tailored towards
family/children’s films
(i.e. animated films).

Exploratory Data Analysis

• As expected, almost
all films are released
after 1995, with
roughly 80% of them
released after 2014.

• Almost half of the
movies in this dataset
were released between
2018-2020.

Model 1: Cosine Similarity
Given two vectors A, B, the similarity between them is given by the cosine of the angle separating them:

Since , similarity is measured by -1 to 1, where 1 indicates a perfect correlation and 0
indicates no correlation. This is one way of implementing recommendation systems: given a piece of
data A, compute the cosine similarity between candidate data entries B and output the three that are
closest to 1.

In context of our dataset, we will use cosine similarity based on the following factor:
• Content-based filtering: Given a movie description, output the top 3 movie recommendations

whose description closely matches the inputted one.

Model 1: Cosine Similarity
We will be importing the TfidfVectorizer and
cosine_similarity submodules from scikit-learn.
• TfidfVectorizer converts strings to vectors stored in

data.
• cosine_similarity constructs a symmetric, similarity

matrix containing the similarity index between all
candidate movies. For instance, the top 3 movies could
have a similarity matrix of the form:

• We will use our newfound recommendation system to
find 3 movies whose description is most similar to Zoo.

Model 1: Cosine Similarity
Input

Zoo description: A drug dealer starts having doubts about
his trade as his brother, his client, and two rappers from the
slums each battle their own secret addictions.

Recommendations

Being Napoleon description: On the 200th anniversary of the
Battle of Waterloo, thousands of enthusiast reenact the epic
clash. But there can only be one Napoleon.

Ghosts of War description: Five, battle-worn Allied soldiers
guarding a chateau previously occupied by Nazis start
experiencing unexplained and terrifying supernatural
horrors.

El señor de los Cielos description: Only Aurelio Casillas can
fill Pablo Escobar’s shoes and become Mexico’s biggest drug
trafficker of the ’90s.

Model 1: Cosine Similarity
Overall, it appears that the recommendation system is partially successful.

The movie El señor de los Cielos is very similar to Zoo, mainly thematically and with respect to the plot.

Ghosts of War can be acquainted with Zoo in the sense of psychological trauma.

Being Napoleon is entirely unrelated with Zoo, but might have been recommended as a false positive
due to some syntax overlap (i.e. battle, clash).

Model 2: Recurrent Neural Networks (RNNs)

. . .

. . .

Recurrent neural networks are neural
networks well-suited for sequential data,
storing data from previous time-steps and
learning from temporal patterns.

The structure is almost identical to a typical
neural network, with the exception of a
recurrent weight U, repeating activation
functions while using the same weights and
biases W, B (over multiple time steps) in each
hidden layer.

Additionally, we choose the number of epochs,
or number of iterations of forward-feeding
and backpropagation, to balance
computational cost while minimizing our loss
function.

For out dataset, RNNs are appropriate if we
select a “history” of movies the user has
watched. Through this, the neural network
will output 3 movies to recommend with
these optimized weights and biases.

Model 2: Recurrent Neural Networks (RNNs)
We propose the following RNN structure:
• Input layer: 5 neurons, or the last 5 movies the user

has watched.
• Embedding layer: 32 neurons, mapping categorical

data into a vector of 32 integers.
• Hidden layer: 64 neurons, GRU (Gated Recurrent

Unit). Uses sigmoid and tanh activation functions as
transitions.

• Output layer: 3 neurons, uses softmax (logits) as the
activation function, predicting the 3 most likely
movie to recommend.

• Since we are dealing with a multi-classification
problem, we impose a cross-entropy loss function.

• We run over 5 sequences (as implied by input layer)
and 30 epochs to achieve a desirable, minimal loss
function.

• In total, there are 67,124 parameters!

Relevant submodules: LabelEncoder, torch, nn,
TensorFlow, defaultdict.

Model 2: Recurrent Neural Networks (RNNs)
For simplicity, we select our viewing history as the
first 5 movies in the dataset.

• As expected, the loss function starts off large
over the first few iterations of the neural
network.

• As we repeatedly run through and
backpropagate, the loss function appears to be
steadily converging to some minimum.

• The viewing history primarily falls into
international movies, documentaries, and
comedies.

• The recommended movies share some of the
genres in our viewing history. While we did not
empirically measure the accuracy of our model,
we can say there is some success in
recommending new movies.

Output of Neural Network

Loss Function over 30 epochs

Viewing History

Conclusion
Throughout this presentation, we have:
• Motivated the need for recommendation systems.
• Introduced the dataset and necessary preprocessing techniques.
• Performed exploratory data analysis on different features in our data.
• Used cosine similarity to recommend movies with similar descriptions.
• Deployed a recurring neural network to recommend movies given a user’s viewing history

(retrospective technique).

If time allowed, I would have liked to:
• Learn more about the general dataset through visualization techniques.
• Explore ways to improve the cosine similarity recommendation system (i.e. advanced word

embeddings such as Word2Vec).
• Apply cosine similarity based on different features in the dataset (i.e. Rating, Genres).
• Find ways to test accuracy in our recurrent neural network and do more tinkering with the

hidden/output layers.

Miscellaneous
The dataset can be found through the website:
https://www.kaggle.com/datasets/satpreetmakhija/netflix-movies-and-tv-shows-2021/data

The .ipynb file (Jupyter Notebook), containing the code to generate everything in this presentation,
will eventually be accessible through my GitHub:

https://github.com/ryangomberg?tab=repositories

The recurrent neural network diagram was mostly inspired by An Introduction to Statistical Learning.

https://www.kaggle.com/datasets/satpreetmakhija/netflix-movies-and-tv-shows-2021/data
https://github.com/ryangomberg?tab=repositories

	Slide 1: Recommendation System Case Study: Netflix Dataset
	Slide 2: Contents
	Slide 3: The Need for Recommendation Systems
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

