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1 Conditional Probability and Moments

So far, we have discussed the fundamental properties of probability that are drawn from
basic set theory. We will continue to apply these practices when talking about the upcoming
sections.

1.1 Conditional Probability and Bayes’ Theorem

Let’s use a six-sided die to motivate how conditional probability works. We know that the
probability of rolling an odd number is 0.5. However, within the odd numbers, what is
the chance of rolling a 3 or higher? We can merely compute the probability by counting
the number of odd numbers between 3 to 6 and the number of odd numbers on a die.

P (roll 3 or higher | odd) = cardinality of the set {3, 5}
cardinality of the set {1, 3, 5}

=
2

3
.

The notation reads: “the probability that a 3 or higher was rolled given the number
rolled was odd.”

Example 1.1. In a group of 635 men who died in 1990, 160 of the men died from causes
related to heart disease. Moreover, 275 of the 635 men had at least one parent who suffered
from heart disease, and of those 275 men, 95 died from causes related to heart disease. Find
the probability that a man randomly selected from this group died of causes not related to
heart disease, given that neither of his parents suffered from heart disease.

By constructing a simple table and some
quick math, we can summarize our sam-
ple space. We need only look at the bot-
tom row as given by the question. So, out
of the 360 men whose parents never had
HD, 295 of them died to a cause that was
not related to HD. Therefore, the proba-
bility is simply

P (No HD | Neither parent with HD) =
295

360
≈ 81.94% or 0.8194.

Definition 1.2. Let A and B be two events. The conditional probability of A given
B is

P (A|B) =
P (A ∩B)

P (B)
=

P (AB)

P (B)
.

Rearranging terms from the definition gives

P (B) · P (A|B) = P (AB) = P (A) · P (B|A).
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Example 1.3. The blood pressure (high, low, or normal) and heartbeats (regular or
irregular) of a random sample of patients are measured. Of the patients,

1. 36% have high blood pressure and 16% have low blood pressure.

2. 21% have an irregular heartbeat.

3. Of those with an irregular heartbeat, one-third have high blood pressure.

4. Of those with normal blood pressure, one-eighth have an irregular heartbeat.

What portion have a regular heartbeat and low blood pressure?

By constructing and filling out a table, we can identify the percentage rather quickly. We
also need to verify that the sum of entries add up to 1.

Definition 1.4. Events A and B are independent if P (A ∩B) = P (A) · P (B)
Intuitively, independence means P (A) = P (A|B) and P (B) = P (B|A) so knowing if A or
B occurred gives no information on whether or not the event occurred.

Say A and B are two independent events. If we want to find the probability of A given
B, we already know that B occurring does not influence the outcome of A, so the
probability is just P (A).

Example 1.5. Suppose A and B are independent events with P (A) = 0.6 and P (A∩B) =
0.3. Find P (B) and P (A|B).
By independence, we have

P (A ∩B) = P (A) · P (B)

0.3 = 0.6P (B) ⇐⇒ P (B) = 0.5

As alluded to earlier, P (A|B) = P (A) = 0.6.
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Example 1.6. A and B are events such that P (A) = 0.4, P (B) = 0.1, and P (A ∩B) =
0.05. Are they independent? What is P (B|A)?

P (A) · P (B) = 0.4 · 0.1 = 0.04 ̸= 0.05 = P (A ∩B) Not independent

P (B|A) = P (A ∩B)

P (A)
=

0.05

0.4
= 0.125

Example 1.7. If P (A) = 0.2 and P (B) = 0.3, find P (A ∪ B) if (a) the events are
independent and (b) the events are mutually exclusive.
(a)

P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.2 + 0.3− (0.2 · 0.3) = 0.44

(b)
P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.2 + 0.3− 0 = 0.5

Let’s revisit conditional probability, namely this equation

P (A) · P (B|A) = P (A ∩B).

This equation can be thought of a sequence of events: first we need A to occur, and then
second we need B to occur, taking into account the fact that A occurred.

Example 1.8.

Find the probability of having a flush after being dealt five cards from a standard deck?
Recall that a flush contains at least 5 cars of the same suit. Assume we use a standard
deck: 52 cards, with 4 suits and 13 ranks.

We present two approaches to reach the same answer.

We can count the probability of 5 independent events, and multiply by 4 for the total
number of unique suits. The probability of picking a card from one suit is 13

52 . Since there
are now 51 cards and 12 cards of that suit, the chance of pulling another card from that
suit is 12

51 . Repeating this process yields

4 · 13
52

· 12
51

· 11
50

· 10
49

· 9

48
≈ 0.198%.

Similarly, 4 · 13
52 = 1 is simply the probability of picking any card, and the resulting

probabilities are from picking the same suit.

The following examples look at variations of the previous problem.
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Example 1.9.

If exactly three of the first 5 cards dealt are spades, what is the probability of being dealt
a flush in the first 7 cards?

Since 5 cards have already been dealt, there are 47 cards left in the deck with 10 spades
in there. If we need a flush in the first 7 cards, the next 2 cards dealt must spades. We
can compute the probability of cards 6 and 7 being spades as

P (next 2 cards are spades) = P (6th card is a spade) · P (7th is a spade | 6th is a spade)

=
10

47
· 9

46
≈ 0.0416 = 4.16%

Example 1.10.

If exactly four of the first 5 cards dealt are spades, what is the probability of being dealt
a flush in the first 7 cards?

We consider two methods of solving this problem:

Method 1 : We are searching for the probability that at least one of the next two cards.
One possibility is to consider the probability of its complement−that neither of the next
two cards are spades−and subtract it from 1. We would have

P (flush in 7 cards) = 1−P (next two cards are not spades) = 1−
(
38

47
· 37
46

)
= 0.35 = 35%

Method 2 : Use a tree diagram to write out the possible outcomes.

According to the diagram, there are two
ways to complete a flush. Once by get-
ting a spade on the 6th card, or getting a
non-spade and a spade right after. Their
respective probabilities are 9

47 and 38
47 ·

9
46 .

Add them together:

9

47
+

(
38

47
· 9

46

)
= 0.35

Example 1.11. An urn contains 10 balls: 4 red and 6 blue. A second urn contains
16 red balls and an unknown of blue balls. A single ball is drawn from each urn. The
probability that both balls are different colors is 0.528. Calculate the number of blue balls
in the second urn.

As with the previous example, we will draw a tree diagram to describe all four outcomes.
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The expressions on the second branch de-
scribe the probability given an unknown
quantity of blue balls b. There are two
possibilities that yield the desired out-
come: pulling a blue ball then a red ball,
or a red ball then blue ball. Mathemati-
cally, we can write this as

0.528 =
6

10

(
16

16 + b

)
+

4

10

(
b

16 + b

)
Through expansion and rearranging, we
find that b = 9 .

Example 1.12. A family has two children, and they are not twins. Given that at least
one of the children is a boy, what is the probability that both children are boys?

Contrary to the previous two examples,
the events are independent of each other
(i.e. having a boy does not affect the
probability of having another boy). By
conditional probability, we can write

P (2 boys | at least 1 boy)

=
P (2 boys)

P (at least one boy)
=

1
4
3
4

=
1

3

Or, we can look at the tree diagram and
observe that 3 outcomes have at least one
boy (the top 3 on the second branch).
Out of these three outcomes, only one
results in two boys, thus giving us the
probability of 1

3 .

These examples described how probability works in sequences of events, or finding the
probability given the multiple outcomes of two or more events.

Once again, let’s revisit the formula for conditional probability. Suppose we want to find
P (A|B) but we are given P (B|A) instead. By rewriting P (A ∩B) = P (A)P (B|A), we
can obtain the simplest form of Bayes’ Theorem:

P (A|B) =
P (A)P (B|A)

P (B)
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Example 1.13. Below is a table relating one’s age range, likelihood of a car accident,
and the proportion of drivers in each age range.

Age of Driver Probability of Accident Portion of Company’s Insured Driver

16-20 0.06 0.08

21-30 0.03 0.15

31-65 0.02 0.49

66-99 0.04 0.28

Given that the driver got into an accident, what is the probability that the driver’s age is
between 31 and 65?

We will use Bayes’ Formula to solve this. By doing so, we must uncover 3 probabilities.

P (age 31-65) = 0.49 and P (accident | age 31-65) = 0.02 by the table. We also need to
compute the probability of an accident occurring. This is done by multiplying the
accident probability by the respective proportion for each age range, and summing them
up:

P (accident) =
∑

age groups

P (accident, age group)

= (0.08)(0.06) + (0.15)(0.03) + (0.49)(0.02) + (0.28)(0.04) = 0.0303

Plugging in our known values,

P (age 31-65 | accident) = P (age 31-65, accident)

P (accident)
=

P (age 31-65) · P (accident | age 31-65)

P (accident)

=
(0.49)(0.02)

0.0303
= 0.3234 or 32.34% .

The computation used to find the probability of an accident is a common result of the
upcoming theorem.

Theorem 1.14 (Law of Total Probability). If A1, A2, . . . , Ak are disjoint and P (A1)+
P (A2) + · · ·+ P (Ak) = 1 then

� P (B) = P (B ∩A1) + P (B ∩A2) + · · ·+ P (B ∩Ak)

� P (B) = P (A1)P (B|A1) + · · ·+ P (Ak)P (B|Ak)

The sets A1, . . . , Ak are called a partition of the sample space. We will often refer to them
as a list of all possible cases.

In the previous example, the age groups were the Ai and B was the event of an accident.
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The previous theorem is crucial to generalize Bayes’ Theorem to multiple events and
groups.

Theorem 1.15 (Bayes’ Theorem). Suppose A1, . . . , Ak are a partition of the sample
space. Then

P (A1|B) =
P (A1 ∩B)

P (B)
=

P (A1)P (B|A1)∑k
i=1 P (B ∩Ai)

=
P (A1)P (B|A1)∑k
i=1 P (Ai)P (B|Ai)

The final denominator sums one event over all cases.

Bayes’ Theorem tells us the probability of a past event occurring given a present
observation, making it a crucial role for inverting mathematical probabilities. In Bayesian
terms, P (A1|B) is the posterior probability and P (Ai) is the prior. Additionally, the
denominator is the result found in Theorem 1.14!

Example 1.16. Life insurance policy holders are categorized as standard, preferred,
and ultra-preferred. Of a company’s policyholders, 50% are standard, 40% are preferred,
and 10% and ultra-preferred. The probability of dying in the next year is 0.01 for each
standard policyholder, 0.005 for preferred policyholders, and 0.001 for ultra-preferred. A
policyholder dies in the next year. What is the probability that the deceased policyholder
was standard?

Let S denote someone who is standard

P (S | died) = P (S ∩ died)

P (died)
=

(0.5)(0.01)

(0.5)(0.01) + (0.4)(0.005) + (0.1)(0.001)
≈ 70.4%

Example 1.17. Taxicabs in Crobuzon are all either green or blue. On Tuesday, a taxicab
got into an accident. A witness to the accident thought that the cab involved was blue, and
further tests showed that the witness has an 80% chance of correctly identifying the color
of a taxicab, independently of its color. If 85% of the taxicabs on the streets on Tuesday
were green, what was the probability that the taxicab involved in the accident was blue?

P (Blue cab | Witness said blue) =
P (Blue cab and witness said blue)

P (Witness said blue)

=
(0.15)(0.8)

(0.15)(0.8) + (0.85)(0.2)
≈ 41%

Recall that we use 0.15 as the complement of the 85% of green taxicabs, and 0.2 as the
complement of the 80% correct identifications. The probability of a witness saying blue
is the linear combination of blue cars · correct identification and green cars · incorrect
identification.
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1.2 Discrete Moments

In this section, we’ll go over basic characteristics of probability distributions of random
variables, or the primary measures of central tendency. Generally, the most common
measures of a random variable are:

� Mean = average value

� Median = “middle” value

� Mode = average value

Median and mode are fairly straightforward to find, however computing the mean can be
more complicated, depending on the distribution.

Definition 1.18. We say X is a random variable if it is a number whose value depends
on chance. More formally,

X : S → R where S is the sample space

X is a discrete random variable if we can list all of the possible values. For discrete
variables,

1 =
∑
x

P (X = x)

Typically we use capital letters for random variables and lower case letters for possible, or
non-random, values.

Definition 1.19. For a discrete random variable X, y is the mode of X if P (X = y) ≥
P (X = x) for all x (i.e. the mode y is the input that maximizes P (X = y)).

The mode is NOT unique, a random variable X can have multiple modes, but it will always
have at least one.

Example 1.20. Suppose I roll an otherwise fair 7 sided die whose faces are 1, 1, 1, 2, 4,
4, and 6. Find the mode.

Let X be the result of the roll. Then,

P (X = 1) =
3

7
P (X = 2) =

1

7
P (X = 4) =

2

7
P (X = 6) =

1

7

The mode is 1 because when y = 1, P (X = y) reaches its max of 3
7 .

The following example uses a common random variable that has not yet been covered.
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Example 1.21. Find the mode of a Poisson random variable with mean 2.8, meaning
that

P (N = n) =
2.8n

n!
e−2.8 for n = 0, 1, 2, . . .

We can plot the above function using a graphic calculator and construct the table below:

n 0 1 2 3 4 5 6

P (N = n) 0.0608 0.1703 0.2384 0.2225 0.1557 0.0872 0.0407

The table tells us that the mode is 2, for it maximizes P (N = y).

Before introducing the median, we go over the cumulative distribution function, or the
probability that a random variable will take a value less than or equal to.

Definition 1.22. Let X be a random variable. The function F (x) = P (X ≤ x) is the
cumulative distribution function (CDF) of X.

For example, F (2) = P (X ≤ 2), or the probability that the value will be less than 2. Say
k is the maximum value of X. Then P (X ≤ k) = 1.

Definition 1.23. The median of a random variable X is the smallest m such that
P (X ≤ m) = F (m) ≥ 1

2 .

Remark : This is more of a black-box definition and does not cover all corner cases. For
instance, the median may not be uniquely defined for some random variables.

Example 1.24. Suppose I roll an otherwise fair 7 sided die whose faces are 1, 1, 1, 2, 4,
4, and 6. Find the median.

Recall the probabilities found in Example 1.20. We will use these to evaluate the CDF for
X = 1, 2, 4, and 6

P (X = 1) =
3

7
P (X ≤ 1) =

3

7

P (X = 2) =
1

7
P (X ≤ 2) =

4

7

P (X = 4) =
2

7
P (X ≤ 4) =

6

7

P (X = 6) =
1

7
P (X ≤ 6) = 1

Since P (X ≤ 1) ≤ 1
2 and P (X ≤ 2) ≥ 1

2 , by Def 1.23, the median is 2.

9



Ryan Gomberg Probability Notes Page 10 of 138

Definition 1.25 (Percentile). The 100% · pth percentile πp is the smallest possible x
such that P (X ≤ x) ≥ p.

Let’s continue the 7-sided die from Examples 1.20 and 1.24. If X is our die and F is our
CDF:

x 0 1 2 4 6

F (x) 0 3
7

4
7

6
7 1

We make the following observations

1. 5th percentile = 1 since P (N ≤ 1) ≥ 0.05 but P (N ≤ 0) < 0.05

2. 10th percentile = 1 since P (N ≤ 1) ≥ 0.1 but P (N ≤ 0) < 0.1

3. Median = 50th percentile = 2

4. 90th percentile = 6 since P (N ≤ 4) < 0.9 but P (N ≤ 6) ≥ 0.9

Percentiles are a generalized extrapolation of the median, where 0 ≤ m ≤ 1. Recall that
the 50th percentile is when m = 1

2 and also the median.

The following example dives into one of the corner cases alluded to earlier.

Example 1.26. Roll a fair 6-sided die. What is the median outcome?

n P (N = n) F (n) = P (N ≤ n)

1 1/6 1/6

2 1/6 2/6

3 1/6 1/2

4 1/6 4/6

5 1/6 5/6

6 1/6 1

By our definition, 3 is the first time F (n) ≥ 1
2 so the median is 3.

But F (x) = 1
2 for any x such that 3 ≤ x < 4 (e.g. F (3.5) = 1/2).

This suggests infinitely many medians, for anything in the interval 3 ≤ x < 4 would
qualify as one.

Example 1.27. Suppose that P (N = n) = n
15 for n = 1, 2, 3, 4, 5. Find the median of N .

Evaluating the CDF:

10
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n P (N = n) F (n) = P (N ≤ n)

1 1/15 1/15

2 2/15 1/5

3 1/5 2/5

4 4/15 2/3

5 1/3 1

Since P (N ≤ 3) < 1
2 and P (N ≤ 4) ≥ 1

2 , we say the median is 4 .

We now motivate the mean with a simple example. Suppose that, in a group of 10
people, I owe $4 to two of them, $2 to one of them, $1 to one of them, and nothing to the
others. On average, how much do I owe to these 10 people?

We can straightforwardly compute this as the total amount owed divided by the number
of people:

(4)(2) + (2)(1) + (1)(2)

10
=

12

10
= $1.20

For simple problems such as these, we can compute the mean using a fraction.

Definition 1.28 (Expected Value). If X is a discrete random variable, then

E[X] =
∑
x

x · P (X = x)

E[X] is the expected value, or the mean, of X. More generally, let g(X) be a function
of random variable X. Then,

E[g(X)] =
∑
x

g(x) · P (X = x)

Example 1.29. An insurance policy pays 100 per day for up to 3 days of hospitalization
and 50 per day of hospitalization thereafter. Find the expected payment for hospitalization
if the number of days of hospitalization, X, is a discrete random variable with

P (X = k) =

{
6−k
15 for k = 1, 2, 3, 4, 5

0 otherwise

Let g(k) = payment for k days in the hospital

E[g(x)] =
∑

g(k)P (X = k)

k 1 2 3 4 5

F (x) 5/15 4/15 3/15 2/15 1/15

11
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Note that insurance pays $100 for the first day, $200 for the second, $300 for the third,
$350 for the fourth, and $400 for the fifth. The expected value is the cumulative payment
on the k-th day multiplied by the probability on the k-th day. Or, more precisely,

E[g(X)] = 100

(
5

15

)
+ 200

(
4

15

)
+ 300

(
3

15

)
+ 350

(
2

15

)
+ 400

(
1

15

)
= $220

Example 1.30. Suppose that P (N = n) = n
15 for n = 1, 2, 3, 4, 5. Find E[N ]

E[N ] =
∑
n

nP (N = n) =
1

15
+

4

15
+

9

15
+

16

15
+

25

15
=

55

15
=

11

3

Remember the repayment example from earlier:

Suppose that, in a group of 10 people, I owe $4 to two of them, $2 to one of them, $1 to
one of them, and nothing to the others. On average, how much do I owe to these 10
people?

We used the most direct definition of averages to solve this. Had we used expected value,
the answers should agree. What if we paid the money in steps?

1. Pay $1 to everyone who is owed money.

2. Pay $1 more to everyone who is still owed money (i.e. people who were initially
owed $2 or $4), repeating in $1 increments until everyone has been paid in full.

The total payment would be $5 in step 1, $3 in step 2, $2 in step 3, and $2 in step 4, in
which everyone will have been paid after. Dividing the total payment by 10 yields the
same average as before.

Let’s try to generalize this to infinitely many steps. If N ≥ 0 and N is an integer valued
variable,

E[N ] = P (N > 0) + P (N > 1) + P (N > 2) + . . . =

∞∑
n=0

P (N > n)

By letting k = n+ 1 we have

P (N > n) = P (N ≥ n+ 1) = P (N ≥ k) =⇒ E[N ] =
∞∑
k=1

P (N ≥ k)

This is mainly done to clean up notation and replace > with ≥. The function
P (N > n) = 1− F (n) is called the survival function and was appropriately given its
name to approximate the probability that something will last longer than expected. The
discrete representation of the survival function doesn’t hold up as well whereas the
continuous form does.

12
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Example 1.31. Following a certain type of surgery, patients are hospitalized for N days,
with P (N ≥ k) = 5−k

5 for k = 0, 1, 2, 3, 4, 5. Find E[N ] using the survival method.

E[N ] =
∞∑
n=0

P (N > n) = P (N > 0) + P (N > 1) + P (N > 2) + P (N > 3) + P (N > 4)

= P (N ≥ 1) + . . .+ P (N ≥ 5) =
4

5
+

3

5
+

2

5
+

1

5
+ 0 = 2

What if we found E[N ] through its definition? Recall that

P (N = k) = P (N ≥ k)− P (N ≥ k + 1) =
5− k

5
− 5− (k + 1)

5
=

1

5

E[N ] =

(
0 · 1

5

)
+

(
1 · 1

5

)
+

(
2 · 1

5

)
+

(
3 · 1

5

)
+

(
4 · 1

5

)
= 2

Now, we will explore an important metric that is often used in conjunction with the
mean. Suppose X,Y , and Z are three random variables such that

P (X = 2) = 2

P (Y = 1) =
1

3
P (Y = 2) =

1

3
P (Y = 3) =

1

3

P (Z = 1) =
1

2
P (Z = 3) =

1

2

Then E[X] = E[Y ] = E[Z] = 2. However, Y is more likely to deviate from the mean than
X, and Z is even more likely to do so. Here we just compared the variance between the
random variables!

Definition 1.32. The variance of a variable quantifies how much it differs from its
mean. Given a discrete random variable X and its expected value E[X],

Var(X) = E[(X − E[X])2] or
∑
k

P (X = k)(Xk − E[X])2

Alternatively, we can write it as

Var(X) = E[X2]− (E[X])2

Let’s use both definitions to compute Var(X),Var(Y ),Var(Z):

Var(X) = E[X2]− (E[X])2 = X2P (X = 2)− 22 = 4(1)− 4 = 0

13
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Var(Y ) = E[(Y − µY )
2] =

1

3
(1− 2)2 +

1

3
(2− 2)2 +

1

3
(3− 2)2 =

2

3

Var(Z) = E[(Z − µZ)
2] =

1

2
(1− 2)2 +

1

2
(3− 2)2 = 1

Definition 1.33 (Moments).

E[Xk] is the k-th moment, or sometimes called the k-th raw moment, of X
µ = E[X] = mean = average
E[X2] is the second (raw) moment of X
Var(X) = E[(X − µ)2] = σ2 = 2nd central moment of X.
Var(X) = E[(X − µ)k] = σk = k-th central moment of X.
Var(X) = E[(X − a)k] = k-th moment about a.

Example 1.34. Refer to Example 1.29: An insurance policy pays 100 per day for up to
3 days of hospitalization and 50 per day of hospitalization thereafter. The number of days
of hospitalization, X, is a discrete random variable with probability function

P (X = k) =

{
6−k
15 for k = 1, 2, 3, 4, 5

0 otherwise

The mean payment is $220. Find the variance of a payment for the hospitalization.

Let Y denote the payment amount.

k 1 2 3 4 5

Y 100 200 300 350 400

P (X = k) 5/15 4/15 3/15 2/15 1/15

Var(X) =
∑
k

P (X = k)(Yk − E[X])2

=
5(−120)2

15
+

4(−20)2

15
+

3(80)2

15
+

2(130)2

15
+

1802

15
= 10,600

We will now verify the second definition of variance. Recall that if an operator f is linear,
it holds that f(x+ y) = f(x) + f(y) and f(ax) = af(x). In fact, E[X] is a linear
operator, so E[X + Y ] = E[X] + E[Y ] and E[aX] = aE[X]!

Proof. Let µ = E[X]. Then,

E[(X − µ)2] = E[(X2 − 2µX + µ2)] = E[X2]− 2µE[X] + E[µ2]

= E[X2]− 2µ2 + µ2 = E[X2]− µ2 = E[X2]− (E[X])2

14
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As implied by the definition of variance, it follows that Var(X) ≥ 0 and Var(X) = 0 if
and only if P (X = E[X]) = 1. This implies E[X2] ≥ (E[X])2.

We proceed to two properties of variance:

Theorem 1.35 (Transformations on Variance). LetX be a random variable, a, b ∈ R
(constants). Then,

1. Var(aX) = a2Var(X)

2. Var(X + b) = Var(X)

Combining items (1) and (2), Var(aX + b) = a2Var(X).

Proof.
Var(aX) = E[a2X2]− (E[aX])2 = a2E[X2]− (aE[X])2

= a2E[X2]− a2(E[X])2 = a2(E[X2]− (E[X])2) = a2Var(X)

This completes the proof for item (1).

Var(X + b) = E[(X + b)2]− (E[X + b])2 = E[X2 + 2bX + b2]− (E[X] + E[b])2

= E[X2] + 2bE[X] + E[b2]− (E[X])2 − 2E[X]E[b]− (E[b])2

= E[X2] + 2bE[X] + b2 − (E[X])2 − 2bE[X]− b2 = E[X2]− (E[X])2 = Var(X)

This completes the proof for item (2).

As expected, item (2) explains how translations on a probability distribution will not
impact the variance.

Definition 1.36. Let X be a random variable with variance Var(x). The standard
deviation and coefficient of variation of X satisfy

SD(X) = σX =
√
Var(X) CV(X) =

σ

µ
=

SD(X)

E[X]

If c ∈ R is a constant,

SD(cX) = |c|Var(X) CV(cX) = CV(X)

Remark : If E[X] is held constant and σ increases, then CV(X) also increases.

Example 1.37. A random variable X satisfies E[X] = 5 and SD(X) = 3. Find (a)
E[X2] (b) Var(2X + 6) (c) CV(2X + 6)

15
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(a) We can directly compute Var(X) = 9 because we are given the standard deviation,
allowing us to use the definition of Var(X) to find E[X2].

9 = E[X2]− (E[X])2 =⇒ 9 = E[X2]− 52 =⇒ E[X2] = 34

(b) Since Var(X) = 9, it follows from Theorem 1.35 that Var(2X + 6) = 36 .

(c) We have that Var(2X + 6) = 36 implies SD(2X + 6) = 6, and E[2X + 6] = 2E[X] +
E[6] = 10+6 = 16 using properties of linearity and the fact that E[X] = 5. Therefore,

CV(2X + 6) =
6

16
=

3

8
.

Lastly, we will cover a unique case of discrete random variables, in which the probability
is the same for each outcome.

Definition 1.38 (Discrete Uniform). X is (discrete) uniform on {1, 2, . . . , n−1, n}
if P (X = i) = 1

n for those n choices.

Note that the average of 1 and n is n+1
2 , as is the average of 2 and n− 1 and 3 and n− 2

and so forth. Therefore,

E[X] =
n+ 1

2
Var(X) =

n2 − 1

12

Example 1.39. Suppose X is uniform on {3, 4, 5, 6, 7, 8}. What is E[X]? Var(X)?

As before, we find E[X] by pairing extremes, with each pair having an average of
11
2 = E[X]. Alternatively, X is not a standard uniform because it starts at 3, not 1. But
X − 2 is standard uniform on {1, 2, 3, 4, 5, 6}.

E[X − 2] =
1 + 6

2
=

7

2
=⇒ E[X] = E[X − 2] + 2 =

7

2
+ 2 =

11

2

Var(X − 2) = Var(X) =
n2 − 1

12
=

62 − 1

12
=

35

12

In general, for a discrete uniform variable,

Var(X) =
(number of values in range)2 − 1

12

16
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Example 1.40. The number of losses N is uniformly distributed on {5, 6, . . . , 20}. Each
loss results in a payment of $100. Find the mean and standard deviation of payment
amount.

Let X = 100N denote the payment amount. Then

E[X] = 100E[N ] = 100

(
20 + 5

2

)
= $1,250

Var(X) = 1002Var(N) = 10000

(
(20− 4)2 − 1

12

)
= 212,500

SD(X) =
√
Var(X) ≈ 460.98

17
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2 Combinatorics

As implied by the name, combinatorics is a branch about counting combinations, or
finding the number of ways to count specific outcomes from a set. Permutations are more
specific, which we care about the order, or arrangement of these outcomes.

For instance, if we had to choose 2 letters out of A, B, C, and D, combinations would
imply that AB = BA, but AB and BA are two different permutations as it accounts for
the order of the letters. Or, if we needed to open a combination lock, the order in which
the numbers are fixed matter, making it a permutation problem. However, if we only
cared about the numbers we choose on the lock, then we have a combination problem.

We can think of combinations as subsets of a set of elements and permutations as
arrangements of that subset.

2.1 Combinations and Permutations

Combination and permutation problems can get messy rather quickly, so we will start
with a simple scenario: Given people A, B, and C, how many different rankings are
possible?

Because we are looking at the number of rankings, we have a permutation problem.
There are 3 choices of who comes first, 2 people left who can be second, and 1 person who
is last, as displayed in the tree diagram below.

Thus, the total number of possibilities is 3 · 2 · 1 = 6.

How many possible rankings are there of a group of 12 people?

12 11 10 . . . 3 2 1

There are 12 choices of who can be first, then 11 left who can be second, 10 left who can
be third. Repeat until there is just one who can be last. At each step, multiply the
number of choices for the new step with choices so far. This yields 12! = 12 · 11 · 10 . . . 2 · 1.

18
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The n! notation indicates a factorial, which is the product of the positive integer n and all
of the ones less than it. We have that

n! = n · (n− 1) · (n− 2) · · · 2 · 1, 1! = 1, 0! = 1

Each order is called a permutation, where n! is the number of permutations of n objects.

Example 2.1. A contest with 12 people gives out 3 distinct prizes. How many ways are
there to give out these prizes?

There are 12 choices of who can pick prize 1, 11 who can pick prize 2, and 10 who can
pick prize 3. So, there are 12 · 11 · 10 ways to do this.

This is an example of a partial permutation, or a k-permutation. If there are k items
being chosen among n total items, then there are

n!

(n− k)!
total permutations.

In simple situations this formula is convenient to have; with more complicated setups,
however, it is more useful to think it out from scratch.

Example 2.2. How many 3 digit numbers are there with all even digits?

The first digit cannot be 0 or else our number would be at most 2 digits. So, we can
choose between 2, 4, 6, and 8. The second and third digits can be 0, so there are 5
choices for each of them. Therefore, the number of permutations are

4 · 5 · 5 = 100

Because we are allowed to repeat digits, we are choosing them without replacement.

What if we are not allowed to repeat digits?

The first digit follows the same logic from the previous example (choose from 4 digits).
Since the second digit can be 0, and one digit is already used, we can choose from 4
digits. The third digit will have 3 digits available to pick from, leaving us with

4 · 4 · 3 = 48 permutations

Because we are not allowed to repeat digits, we are choosing digits without replacement.
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Example 2.3. A conga line forms at a wedding with 20 people (including you) in it.
How many different conga lines are possible with you in one of the last 3 spots?

We are in one of the last 3 spots, so we can be in the 3rd to last, 2nd to last, or last in
line. In each case, there are 19! ways to arrange everyone else, making 3(19!) total
permutations.

In general, if you have nk copies of the k-th distinct item in a set for k = 1, 2, . . . ,m
giving a total of n = n1 + n2 + · · ·+ nm items, there are

n!

n1!n2! · · ·nm!
ways to order the n items

That is, there are n! ways to order n items, n1! ways to arrange item 1, and so forth to
nm! ways to arrange item m.

Example 2.4. How many different 6 six letter words can be made from the word
PEPPER? (they do not have to be actual words).

There are 3 distinct letters: 3 P’s, 2 E’s, and 1 R. If we let
n = 3 + 2 + 1 = 6, n1 = 3, n2 = 2, and n3 = 1, then we have

6!

3!2!1!
=

6 · 5 · 4 · 3 · 2 · 1
12

= 60 six letter permutations

Example 2.5. How many different four letter words can you make from the word
HASHES (once again, they don’t need to be actual words)?

First, we want to find out how many 4 letter words we can make out of 6.

6!

(6− 4)!
=

6!

2!
= 6 · 5 · 4 · 3 = 360 four letter words

Moreover, we have 2 H’s, 2 S’s, 1 A, and 1 E. So, n1 = 2, n2 = 2, n3 = 1, n4 = 1 and

360

2!2!1!1!
= 90 total permutations

Sometimes we are interested in the number of ways to select a group, but the order they
are selected does not matter.

Example 2.6. A contest with 12 people gives out 3 prizes. How many ways are there to
give out the prizes if all 3 are the same?

Recall that when the three prizes were unique, we found that there were 6 permutations
in which they could be distributed. To find the total of combinations, we need to divide
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our previous answer by 6.

12 · 11 · 10
6

= 220 combinations

Definition 2.7 (Combinations). If there are n distinct items and want to select a
group of k items, the number of combinations can be written as

nCk or

(
n
k

)
=

n!

k!(n− k)!

and we call this quantity “n choose k.”

There is a similar notation for permutations, nPk. In addition, it holds that(
n
k

)
=

(
n

n− k

)
and

(
n
0

)
=

(
n
n

)
since 0! = 1 as there is only 1 way to choose the entire set.

Example 2.8. 18 people are to be divided into 3 groups, one with 8 people, one with 6,
and one with 4. How many such divisions are possible?

A standard approach is to initially assume that we have a complete rank, and then divide
by the amount of “overcounting.” So, we first rank all 18 people, and let group A be the
top 8, group B the next 6, and group C the bottom 4.

There are 18! ways to rank everyone, but
within each group people are equal, so we
over counted by 8! · 6! · 4!. Therefore, our
answer becomes 18!

8!6!4! .

Alternatively, we can pick the group with 8 people, and we can do so in(
18
8

)
=

18!

8!10!
ways

From the remaining 10 people, pick the group with 6 people, also deciding the group with
4 people. There are (

10
6

)
=

10!

6!4!
ways to do so

That gives a final answer of (
18
8

)
·
(
10
6

)
=

18!

8!10!
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Example 2.9. 4 distinct numbers are picked from the integers {1, 2, . . . , 30}. How many
ways are there to draw them such that all of them are divisible by 3?

Within this list, 10 numbers are divisible by 3. Out of these 10, we want to choose 4 of
them. (

10
4

)
=

10!

4!6!
=

10 · 9 · 8 · 7
4!

= 210 ways

Example 2.10. 4 distinct numbers are picked from the integers {1, 2, . . . , 30}. How
many ways are there to draw them such that 3 are divisible by 5 and one is divisible by 7?

The first number that is divisible by both 5 and 7 is 35, so we do not need to worry about
duplicates. There are 6 numbers that are multiples of 5 and 4 that are multiples of 7. So,
we have (

6
3

)
·
(
4
1

)
=

6!

3!3!
· 4!

3!1!
= 20 · 4 = 80 combinations

Example 2.11. You buy a dozen eggs at the farmers market but 3 of them are rotten.
How many different ways can you select two eggs that are not BOTH rotten?

For this problem, we can compute all possible combinations, and subtract the amount of
ways to get two rotten eggs:(

12
2

)
−
(
3
2

)
=

12!

10!2!
− 6!

2!1!
= 66− 3 = 63 ways

Example 2.12. A woman has a set of identical triplet sons and quadruplet daughters.
How many ways can she line them up for a picture so that no two sons are standing next
to each other?

There are 3 boys that we can put in 5 spots to ensure that no boy is next to each other.
Thus, there are (

5
3

)
=

5!

3!2!
= 10 ways to do so
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2.2 Common Distributions

Now, we proceed to types of random variables and distributions. Before proceeding, we
motivate the simplest distribution with an example:

Avery is practicing free throws. If they make each shot with probability 0.7 and each shot
is independent, what is the probability that they make the next 4 shots and then miss the
2 after that? What is the probability that they make exactly 4 of the next 6 shots?

Each shot is independent, so each order has probability

P ([Make])4 · P ([Miss])2 = 0.74 · 0.32 ≈ 0.0216 = 2.16%

To make exactly 4 of 6, there are

(
6
4

)
ways to choose 4 shots are successful.

Definition 2.13. A Bernoulli(p) random variable, or a Bernoulli 0-1 random variable, is
a variable that can only be 0 or 1. Usually 1 is considered a success. If p is the probability
of success, then

P (X = 1) = p P (X = 0) = 1− p

The mean and variance follow:

E[X] = p Var(X) = p(1− p)

Say that X is a random variable that can take on two values a and b (not necessarily 0
and 1), with

P (X = b) = p P (X = a) = 1− p = q

Then the mean and variance are

E[X] = aq + bp = a+ p(b− a) E[X2] = a2q + b2p

Var(X) = E[X2]− (E[X])2 = (b− a)2pq

Or: X = (b− a)Y + a Y ∼ Bernoulli(p)

E[X] = (b− a)E[Y ] + a = p(b− a) + a

Var(X) = (b− a)2Var(Y )

Var(X) = (b− a)2pq

Definition 2.14. X is a binomial (n, p) random variable if X is the number of successes
in n independent trials, each of which is a success with the same probability p.

P (X = k) =

(
n
k

)
pk(1− p)n−k
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The Bernoulli distribution is a special case of the Binomial distribution where n = 1, or
they can be considered as individual trials. The essential components of a binomial
distribution include

� A fixed number of trials

� Independent trials

� Success probability is the same in all trials

Theorem 2.15 (Mean and Variance). Let X ∼ Binomial(n, p). Then,

E[X] = np Var(X) = np(1− p)

Proof. The results follow immediately from what we know about Bernoulli distributions.
If Xi ∼ Bernoulli(p), then

E[X] =
n∑

i=1

E[Xi] =
n∑

i=1

p = np

Var(X) =
n∑

i=1

Var(Xi) by independence

Var(X) =
n∑

i=1

p(1− p) = np(1− p)

Example 2.16. A commuter airline sells 32 tickets for a flight on a plane that has 30
seats. The probability that any particular passenger will not show up for a flight is 0.1,
independent of other passengers. Find the probability that more passengers show up for
the flight than there are seats available.

Let N = number of passengers that show up. Then N ∼ Binomial(n = 32, p = 0.9). To
find the probability P (N > 30), we need to sum P (N = 31) + P (N = 32). This can be
achieved through the formula provided in Definition 2.14:

P (N = 31) + P (N = 32) =

(
32
31

)
(0.9)31(0.1) +

(
32
32

)
(0.9)32 ≈ 0.156 = 15.6%

What are the mean, variance, and standard deviation of number of passengers who show
up?

With n = 32 and p = 0.9,

E[N ] = 32(0.9) = 28.8 Var(N) = 32(0.9)(0.1) = 2.88 SD(N) = 1.69
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Theorem 2.17 (Binomial Expansion). For any real numbers a, b and positive integer
n:

(a+ b)n =
n∑

k=0

(
n
k

)
akbn−k

The proof is rather lengthy so we will not dive into it; however, it does involve knowledge
of Pascal’s Triangle and induction.

Example 2.18. Use Theorem 2.17 to evaluate the following sums:

1.

6∑
k=0

6!

k!(6− k)!

In this case, n = 6. a = b = 1 since there are no exponent terms. Therefore, this sum is
equal to

(1 + 1)6 = 26 = 64

2.

n∑
k=0

n!

k!(n− k)!
(−2)k

In this case, n is unknown, but a = −2 and b = 1, so this sum is equal to (−1)n.

3.
n∑

k=1

n!

k!(n− k)!
pk(1− p)n−k

Here, the index starts at k = 1. We can rewrite this as an expression where we have a
sum starting at k = 0 and subtracting off the first term (k = 0).

n∑
k=0

(
n
k

)
pk(1− p)n−k −

(
n
0

)
p0(1− p)n−0

In the first sum, a = p and b = 1− p, so it is equal to (p+ (1− p))n = 1. The second sum
is equal to 1 · 1 · (1− p)n. Therefore, this sum is equal to

1− (1− p)n

In some cases, we are looking at more than just two outcomes. This is where the
multinomial distribution enters.

Example 2.19. Accidents are categorized into three groups: minor, moderate, and severe.
These occur with probabilities 0.5 for minor, 0.4 for moderate, and 0.1 for severe. Two
accidents occur independently in one month. Find the probability that neither accident is
severe and at most one is moderate.
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This is not binomial because each accident (trial) has more than 2 possible outcomes. We
want to sum two probabilities: either we have 1 minor and 1 moderate accident or 2
minor accidents. (

2
1

)
(0.5)(0.4) +

(
2
2

)
(0.5)2 = 2(0.4)(0.5) + 0.25 = 0.65

This was an example of the multinomial distribution.

Suppose there are n trials with 3 possible outcomes. Let the probabilities of those
outcomes be p1, p2, and p3 such that

∑
pi = 1. Let Xi be the number of trials that have

outcome i. Then,

P (X1 = k1, X2 = k2, X3 = k3) =

(
n
k1

)(
n− k1
k2

)(
n− k1 − k2

k3

)
pk11 pk22 pk33

=
n!

k1!(n− k1)!
· (n− k1)!

k2!(n− k1 − k2)!

(
k3
k3

)
pk11 pk22 pk33 =

n!

k1!k2!k3!

The final term is called the multinomial coefficient.

Definition 2.20 (Multinomial Distribution). Suppose there are n independent tri-
als, each with the same r possible outcomes. Let p1, p2, . . . pr be the probabilities of the
outcomes, and Xi the number of trials resulting in the i-th outcome. Then,

P (X1 = k1, X2 = k2, . . . , Xr = kr) =
n!

k1!k2! · · · kn!
pk11 pk22 · · · pkrr

If Xi, Xj are trials whose respective probabilities of success are pi and pj , then

E[Xi] = npi Var(Xi) = npi(1− pi) Cov(Xi, Xj) = −npipj

Cov is the covariance between two random variable, which measures how two random
variables change together, indicating the direction and magnitude of their relationship.
This will be covered more when we talk about joint variability.

As with binomial, we need:

� A fixed number of trials

� Different trials are independent

� All trials have the same distribution

Example 2.21. Accidents are categorized into three groups: minor, moderate, and
severe. These occur with probabilities 0.5 for minor, 0.4 for moderate, and 0.1 for severe.
Four accidents occur independently in one month. Find the probability that there is at
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least one accident of each type.

There are three cases:

1. P (2 minor, 1 moderate, 1 severe) = 4!
2!1!1!(0.5)

2(0.4)(0.1) = 0.12

2. P (1 minor, 2 moderate, 1 severe) = 4!
1!2!1!(0.5)(0.4)

2(0.1) = 0.096

3. P (1 minor, 1 moderate, 1 severe) = 4!
1!1!2!(0.5)(0.4)(0.1)

2 = 0.024

P (Total) = 0.12 + 0.096 + 0.024 = 0.24 = 24%

Example 2.22. San Diego Fire Department has 4 firehouses to store their trucks (North,
West, East, South). These occur with probabilities 0.34 for North, 0.18 for South, 0.21
for West, and 0.27 for East. 40 trucks are parked between all four stations. What is the
probability that each station has an equal amount of trucks? Assume these events are
independent.

The question implies that each station has exactly 10 trucks inside.

P (10 North, 10 West, 10 East, 10 South) =
40!

(10!)4
(0.34)10(0.18)10(0.21)10(0.27)10

= 0.0012 ≈ 0.12%

Theorem 2.23 (Multinomial Theorem). For any real numbers x1, x2, . . . , xk ∈ R we
have:

(x1 + · · ·+ xk)
n =

∑
n1+···+nk=n

(
n

n1, n2, . . . , nk

)
xn1
1 xn2

2 · · ·xnk
k

Example 2.24. Evaluate the sum
∑

i+j+k=5

5!

i!j!k!
2j

In this case, we let n1 = i, n2 = j, and n3 = k. So, we have x1 = 1, x2 = 2, x3 = 1, and
n = 5. ∑

i+j+k=5

(
5

i, j, k

)
= 1i2j1k = (1 + 2 + 1)5 = 1024

Example 2.25. What is the coefficient of a2b2c3 in (a+ b+ 2c)7?

(a+ b+ 2c)7 =
∑

i+j+k=7

(
7

i, j, k

)
aibj(2c)k =

∑
i+j+k=7

2k7!

i!j!k!
aibjck
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where i = 2, j = 2, k = 3. So, the coefficient is

23(7!)

2!2!3!
= 1680

The last distribution to be discussed in this section is the hypergeometric distribution.

Example 2.26. A crate of 10 electrical components has 4 defective components. If
3 components are randomly selected, find the probability that at most one of them is
defective.

There are two cases: none of the 3 are defective, or 1 of the three is defective. Those are
mutually disjoint, so we can sum their probabilities, giving

P (none defective) + P (1 defective) =

(
6
3

)
(
10
3

) +

(
6
2

)(
4
1

)
(
10
3

) =
20

120
=

1

6

Definition 2.27 (Hypergeometric Distribution). Say we have N trials/objects with
m successes. If you randomly select n of them without replacement, thenX ∼ Hyp(n,N,m)
is hypergeometric and has distribution

P (X = k) =

(
m
k

)(
N −m
n− k

)
(
N
n

)
for k = 0, 1, . . . ,min(m,n). If X follows a hypergeometric distribution,

E[X] =
mn

N
Var(X) =

mn(N − n)(N −m)

N2(N − 1)

In summary, it is the number of ways to choose exactly k good items over the number of
ways to choose n total items.

This is not a binomial distribution! Knowing whether or not the first item is good gives
information about whether or not the second one will be good (based on dependent
events).

If n > k, then it isn’t possible to have n successes.

Keep in mind that a binomial distribution is sampling with replacement, and a
hypergeometric distribution is sampling without replacement.
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Example 2.28. When packing for a trip, I draw 6 socks without replacement from a
drawer that contains 16 black socks and 4 white socks. What is the probability I will draw
4 black socks and 2 white socks?

P (W = 2) =

(
4
2

)(
16
4

)
(
20
6

) ≈ 0.282 = 28.2%

Example 2.29. For each problem, determine which type of distribution should be used
and compute the desired probability.

1. I randomly select 6 socks from a drawer. Each sock has a 50% chance of being black, a
30% chance of being brown, and a 20% chance of being white, independently of the other
socks. Find the probability that I will draw 2 socks of each color.

This is a multinomial distribution problem, whose probability is given by

P (2 black, 2 brown, 2 white) =
6!

2!2!2!
(0.5)2(0.3)2(0.2)2 ≈ 0.081 = 8.1%

2. I draw 6 socks without replacement from a drawer that contains 10 black socks, 6
brown socks, and 4 white socks. Find the probability that I will draw 2 socks of each
color.

This is a hypergeometric distribution problem: draws are not independent because we are
sampling without replacement. The probability is computed accordingly:

P (2 black, 2 brown, 2 white) =

(
10
2

)(
6
2

)(
4
2

)
(
20
6

) ≈ 0.104 = 10.4%

3. Suppose that I draw 6 socks with replacement from a drawer that contains 16 black
socks and 4 white socks. What is the probability that I will draw 4 black socks and 2
white socks?

This is a binomial distribution problem since the different draws are independent and
there are two possible outcomes. The probability is

P (4 black, 2 white) = P (2 white) =

(
6
2

)
(0.2)2(0.8)4 ≈ 0.246 = 24.6%
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Summary and Comparison between Binomial/Multinomial/Hypergeometric Distributions
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3 Key Discrete Distributions

In this section, we are going to discuss the Geometric, Negative Binomial, and Poisson
Distribution.

3.1 Geometric Series and Distributions

Many properties of geometric series will be derived here and will be important to have in
our toolkit when we introduce geometric distributions.

Many discrete distributions can equal any non-negative integer. Deriving the
mean/variance of these requires using infinite series.

Theorem 3.1 (Geometric Series Convergence). Let |r| < 1 and a be a real number.
Then,

∞∑
k=0

ark =
a

1− r

Proof. Let S =
∞∑
n=0

arn. Then,

S = a+ ar + ar2 + . . .

Sr = ar + ar2 + ar3 + . . .

Take S − Sr to get

(a+ ar + ar2 + . . .)− (ar + ar2 + ar3 + . . .) = a =⇒ S(1− r) = a ⇐⇒ S =
a

1− r

More generally, for a partial sum,

m∑
n=0

arn =

∞∑
n=0

arn −
∞∑

n=m+1

arn =
a

1− r
− arm+1

1− r
=

a(1− rm+1)

1− r

Or, more plainly,
first term− first missing term

1− r

Example 3.2. Evaluate the sum
17∑
n=3

5 · en+2

23n3−n
.

Note that 23n = 8n, en+2 = e2en, and 1
3−n = 3n. Therefore, r = 3e

8 . The sum is therefore
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equal to
5(33)e5

29
− 5·318e20

254

1− 3e
8

.

Whew!

What if we want the sums

∞∑
n=0

n · arn and

∞∑
n=0

n2 · arn?

This can be achieved with a little bit of calculus! We know that this sum is differentiable
term-by-term, so we can differentiate the series with respect to r! Differentiate the
default geometric series

d

dr

∞∑
n=0

arn =
∞∑
n=0

anrn−1 =
1

r

∞∑
n=0

anrn

We also differentiate
∞∑
n=0

arn

d

dr

(
a

1− r

)
=

a

(1− r)2

Set these two results equal to each other:

1

r

∞∑
n=0

n · arn =
a

(1− r)2
⇐⇒

∞∑
n=0

n · arn =
ar

(1− r)2

We use this result to compute
∞∑
n=0

n2arn. We differentiate
∞∑
n=0

n · arn with respect to r:

d

dr

∞∑
n=0

narn =
1

r

∞∑
n=0

n2arn

d

dr

(
ar

(1− r)2

)
= a

(
(1− r)2 + 2r(1− r)

(1− r)4

)
= a · (1− r)(1 + r)

(1− r)4
=

a(1 + r)

(1− r)3

Setting these two equal to each other:

1

r

∞∑
n=0

n2arn =
a(1 + r)

(1− r)3
⇐⇒

∞∑
n=0

n2arn =
ar(1 + r)

(1− r)3

These results will come in handy as we discuss geometric distributions.
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Example 3.3. Suppose I roll a die until I get a 6. Let N be the total number of rolls.
What is the distribution of N?

Let’s go over the probability as N increases:

P (N > 0) = 1 P (N = 1) =
1

6

P (N > 1) =
5

6
P (N = 2) =

5

6
· 1
6

P (N > 2) =

(
5

6

)2

P (N = 3) =

(
5

6

)2

· 1
6

...
...

P (N > k) =

(
5

6

)k

P (N = n) =
1

6

(
5

6

)n−1

What are the expected value and variance in this distribution?

E[N ] =
∞∑
n=1

nP (N = n) =
∞∑
k=0

P (N > k)

=

∞∑
n=1

n · 1
6
·
(
5

6

)n−1

=

∞∑
k=0

(
5

6

)k

We can use Theorem 3.1 to evaluate the sum

E[N ] =
1

1− 5
6

= 6

To compute the variance, we use the results from earlier:

E[N2] =
∞∑
n=1

n2P (N = n) =
∞∑
n=0

1

6
n2

(
5

6

)n−1

=
∞∑
n=0

n2 · 1
6
· 6
5
·
(
5

6

)n

Letting a = 1
6 and r = 5

6 ,

ar(1 + r)

(1− r)3
=

1
6 · 6

5 · 5
6 · 11

6(
1− 5

6

)3 = 216

(
11

36

)
= 66

Var(N) = 66− 62 = 30
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Theorem 3.4 (Geometric Series starting at 1). Suppose X is a geometric random
variable on {1, 2, . . .} with parameter p if X is the number of trials up to, and including,
the first success. Then,

E[X] =
1

p
Var(X) =

1− p

p2

Proof. We have P (X = n) = p(1− p)n−1.

E[X] =
∞∑
n=1

np(1− p)n−1

Fix k = n− 1, then n = k + 1 and we rewrite the sum as∑
k=0

(k + 1)p(1− p)k =
p

(1− (1− p))2

using the fact
∞∑
n=0

n · arn =
ar

(1− r)2
, where a = p and r = 1− p.

p

(1− (1− p))2
=

p

p2
=

1

p

To compute the variance, we want E[X2]

E[X2] =
∞∑
k=0

n2p(1− p)n−1 =
∞∑
k=0

(k + 1)2p(1− p)k

. . . leaving the same substitution as earlier. We expand (k+1)2 to evaluate three different
series.

∞∑
k=0

k2p(1− p)k +
∞∑
k=0

2k(1− p)k +
∞∑
k=0

(1− p)k

=
p(1− p)(2− p)

p3
+

p(1− p)

p2
+

1

p

We establish a common denominator of p2 by dividing p by p3 on the first fraction and by
multiplying both sides by p on the third fraction:

E[X2] =
(p2 − 3p+ 2) + (p− p2) + p

p2
=

2− p

p2
=

2

p2
− 1

p

Thus,

Var(X) = E[X2]− (E[X])2 =

(
2

p2
− 1

p

)
− 1

p2
=

1

p2
− 1

p
=

1− p

p2
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Theorem 3.5 (Geometric Series starting at 0). Suppose Y is a geometric random
variable on 0, 1, 2, . . . if Y counts the number of failures before the first success. Then

E[Y ] = E[X]− 1 =
1

p
− 1 Var(Y ) =

1− p

p2

Proof. The results are hopefully straightforward to understand. By letting Y = X − 1 be
a translation of X, we revisit the properties of E[X] and Var(X) in Section 1.2.

E[Y ] = E[X − 1] = E[X]− E[1] =
1

p
− 1

Recall that variances do not change if a translation is applied

Var(Y ) = Var(X − 1) = Var(X)

Example 3.6. Let N be the number of visits (possibly 0) that a randomly chosen insured
patient makes to the doctor in a year. If N has a geometric distribution with mean 3, what
is the probability that a randomly chosen insured makes at least 2 visits to the doctor in
a year?

We are told that N can be 0 and that E[N ] = 3. This implies

3 =
1

p
− 1 ⇐⇒ p =

1

4

To compute P (N ≥ 2), we can use the survival method and subtract P (N = 0) and
P (N = 1) from 1:

P (N ≥ 2) = 1− P (N = 0)− P (N = 1) = 1− p− p(1− p) = 1− 2p+ p2 = (1− p)2

=
9

16

3.2 Memoryless Property and Negative Binomial Distributions

We motivate this concept with an example:

Example 3.7. In each round of the dice game “Nines” I roll two fair six-sided dice.
The game ends if either a 7 or 9 is rolled, and continues to the next round on any other
outcome. If I play a game of Nines, what is the expected number of rounds I will play?

If I roll two die, the most probable outcome is a 7 with 6 out of 36 possible ways to roll
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it. In order to roll a nine, you must roll a 4 and 5 or 3 and 6. There are 4 ways to achieve
this. Therefore, the game ends on a given round with probability

6

36
+

4

36
=

5

18

The length of the game is therefore a geometric random variable (starting at 1) with
p = 5

18 . The expected game length is 1
p = 18

5 .

Suppose I watch someone play Nines after the 3rd round. How many more rounds will I
watch?

Intuitively, the concept remains the same. Each round I watch will end the game with
probability 5

18 , and the number of rounds I watch is a geometric series starting at 1, so
the answer remains as 18

5 .

Let’s consider an algebraic approach to the previous example. Fix N = game length. We
start watching after 3 rounds, so we watch for N − 3 rounds. We know the game lasts for
more than 3 rounds, implying N > 3. Using what we know about conditional probability:

P (N − 3 = k | N > 3) =
P (N = k + 3, N > 3)

P (N > 3)
=

p(1− p)k+3−1

(1− p)3

= p(1− p)k−1 = P (N = k)

so (N − 3 | N > 3) and (the original) N have the same distribution, and
E[N − 3 | N > 3] = E[N ]. This is a unique property of discrete geometric distributions,
known as the memoryless property.

Theorem 3.8 (Memoryless Property). If N follows a discrete geometric distribution
with parameter p, then (N − k | N > k) is a geometric distribution starting at 1 with the
same p. This holds whether N starts at 0 or 1.

Example 3.9. A game of Nines lasts for at least 4 rounds. What are the mean and
variance of the length of the game?

We are given that N ≥ 4 =⇒ N > 3. Apply the Memoryless Property as such:

E[N | N > 3] = E[N − 3 + 3 | N > 3]

= E[N − 3 | N > 3] + 3 = E[N ] + 3 =
18

5
+ 3 =

33

5

Once again, variances are not impacted by translation, so

Var(N | N > 3) = Var(N) =
1− p

p2
≈ 9.36
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Example 3.10. Suppose X satisfies P (X = k) = 0.2(0.8)k for k = 0, 1, 2, . . .. Find
E[X | X > 6] and Var(X | X > 6).

X can be 0 and P (X = k) decays geometrically, so X is a geometric starting at 0.
P (X = 0) = p = 0.2(0.8)0 = 0.2.

E[X] =
1

0.2
+ 6 = 11 Var(X) =

1− p

p2
= 20

Let us observe how the memoryless property extrapolates to other distributions:

Example 3.11. Roll a die until the third time a 6 is rolled. Let N denote the number
of non-sixes (failures) that we roll. What is the distribution of N?

If N = n, then roll number n+ 3 was a 6. The first (n+ 3)− 1 rolls had 3− 1 = 2 sixes.
Since there were exactly 3 sixes in the first n+ 3 rolls, there were n non-sixes.

P (N = n) =

(
(n+ 3)− 1

3− 1

)(
1

6

)3(5

6

)n

=

(
n+ (3− 1)

3− 1

)(
1

6

)3(5

6

)n

=

(
n+ (3− 1)

n

)(
1

6

)3(5

6

)n

Recall that the last two factorial expressions are equivalent by symmetry of combinations.

What is the mean and variance of N?

Let N1, N2, N3 be the number of failures before the 1st, 2nd, and 3rd 6, respectively.
Then N3 = N and

N = (N1 − 0) + (N2 −N1) + (N3 −N2)

N1 − 0 is the number of failures before the first six. N2 −N1 is the number of failures
after the first six, but before the second six. And, lastly, N3 −N2 is the number of
failures after the second six, but before the third six.

The number of failures between sixes is a geometric series that starts at 0!

N is the sum of 3 independent geometrics on {0, 1, 2, . . .} and

E[N ] = E[N1] + E[N2 −N1] + E[N3 −N2] = 3E[N1] = 3

(
1
1
6

− 1

)
= 15

This is because p = 1
6 for any given roll and rolling the first six does not affect the

probability of rolling a second six.

Var(N) =
1− p

p2
= 90
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This problem exhibits the key property of a negative binomial distribution:

Definition 3.12 (Negative Binomial Distribution). Suppose N is a negative bino-
mial random variable with parameters r and p if it is the sum of r independent geometric
random variables starting at 0. It is the number of failures before the r-th success.

P (N = n) =

(
n+ (r − 1)

n

)
pr(1− p)n

E[N ] = r

(
1

p
− 1

)
Var(N) =

r(1− p)

p2

Example 3.13. An insurance policy covers accidents at a manufacturing plant. The
probability that one or more accidents will occur during any given month is 3

5 . The number
of accidents that occur in any given month is independent of the number of accidents that
occur in all other months. Find the probability that June with be the fourth month in
2025 in which at least one accident occurs.

Having an accident = “success,” p = 3
5 . We want r = 4th success in 6th try,

n = 6− 4 = 2 “failures.” The probability is therefore

P (N = 6) =

(
5
3

)(
3

5

)4(2

5

)2

≈ 0.2074 = 20.74%

Example 3.14. Let N be the sum of r independent geometrics {0, 1, 2, . . .}. Suppose
that E[N ] = 12 and Var[N ] = 60. Find the probability that N is no more than 2.

We can establish a relationship between E[N ] and Var(N):

Var(N) =
E[N ]

p
60 =

12

p
p =

1

5

Use either equation to find r = 3.

P (N ≤ 2) = P (N = 0) + P (N = 1) + P (N = 2)

=

(
2
0

)
p3 +

(
3
1

)
(1− p)p3 +

(
4
2

)
(1− p)2p3 ≈ 0.0579 = 5.79%

3.3 Poisson Distribution and Variables

Before talking about our final distribution in this section, we need to prove one important
theorem.
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Theorem 3.15 (Taylor Series for ex). The Taylor (or Maclaurin) series for ex centered
at x = 0 is equal to the infinite sum of terms

ex =
∞∑
n=0

xn

n!

Proof. A Taylor Series for a function f(x) centered at x = 0 is equal to the infinite sum

∞∑
n=0

f (n)(0)

n!
xn

so long as f(x) is infinitely differentiable. ex is continuously differentiable, so f(x) = ex =
f (n)(x) for all n. Therefore, f (n)(0) = 1 and

ex =
∞∑
n=0

xn

n!

We can identify variations of ex based on their Taylor Series.

Example 3.16. What is the function representation of the Taylor Series

∞∑
n=0

5netn

n!
e−5?

We want to extract the Taylor Series into a form that is familiar to that of ex.

∞∑
n=0

5netn

n!
e−5 = e−5

∞∑
n=0

(5et)n

n!

Fix u = 5et. Then, we have the series

e−5
∞∑
n=0

un

n!
≈ e−5un = e−5(5et) = e5e

t−5

Example 3.17. Evaluate the series

∞∑
n=2

2n

n!

39



Ryan Gomberg Probability Notes Page 40 of 138

We know

∞∑
n=0

2n

n!
= e2. We subtract the first two terms from e2.

∞∑
n=2

2n

n!
=

∞∑
n=0

2n

n!
−
(
20

0!
+

21

1!

)
= e2 − 3

The Taylor Series for ex is well represented in the Poisson Distribution.

Definition 3.18. X is a Poisson(λ) random variable if

P (X = n) = e−λλ
n

n!
for n = 0, 1, 2, . . .

The Taylor Series for e−λ is

e−λ = 1− λ+
λ2

2
− λ3

6
+ . . .

The e−λ term is the constant needed to make the probabilities to sum to 1.

Poisson variables arise in nature by mimicking the number of occurrences of unusual
events if the number of occurrences in disjoint time intervals are independent.

Theorem 3.19 (Properties of Poisson Distribution). Suppose N ∼ Pois(λ). Then,

E[N ] = λ Var(N) = λ

Proof.

E[N ] =
∞∑
n=0

nP (N = n)

We start the index at 1 because the first term is equal to 0. Moreover, n
n! =

1
(n−1)! and

λn = λ · λn−1. This will help us get the series into something more familiar.

∞∑
n=1

ne−λλ
n

n!
= λ

∞∑
n=1

e−λ λn−1

(n− 1)!

By letting m = n− 1,

λ
∞∑
n=1

e−λ λn−1

(n− 1)!
= λ

∞∑
m=0

e−λλ
m

m!
= λ · e−λ · eλ = λ · 1

. . . since the sum is

∞∑
m=0

P (N = m) = 1. Therefore, E[N ] = λ. To calculate the variance,
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we once again need to find E[N2].

E[N2] =
∞∑
n=0

n2e−λλ
n

n!
=

∞∑
n=1

ne−λλ · λn−1

(n− 1)!

By letting m = n− 1, n = m+ 1 and the sum is

λ
∞∑
n=0

(m+ 1)e−λλ
m

m!
= λ

( ∞∑
m=0

m · e
−λλn

m!

)
+ λ

( ∞∑
m=0

e−λλn

m!

)

= λ

( ∞∑
m=0

mP (N = m)

)
+ λ

( ∞∑
m=0

P (N = m)

)
= λ · E[N ] + λ = λ2 + λ

Var(N) = E[N2]− (E[N ])2 = (λ2 + λ)− λ2 = λ

as desired.

Example 3.20. Policyholders are three times as likely to file two claims as to file four
claims. If the number of claims filed has a Poisson distribution, find the variance of the
number of claims filed.

Let N be the number of claims. Var(N) = λ, so we need to find λ. We currently know
that

P (N = 2) = 3P (N = 4)

e−λλ
2

2
= 3e−λλ

4

4!

The e−λ term can be removed from both sides. We have

λ4

λ2
=

4!

2 · 3
⇐⇒ λ2 = 4 ⇐⇒ λ = Var(N) = 2

Example 3.21. The number of annual losses has a Poisson distribution with second
moment equal to 12. Find the probability that the number of annual losses is at least 2.

Choose N as the number of annual losses.

E[N2] = Var(N)− (E[N ])2 ⇐⇒ 12 = λ+ λ2 ⇐⇒ λ2 + λ− 12 = 0

(λ− 3)(λ+ 4) = 0

We choose λ = 3 because it must be positive.

P (N ≥ 2) = 1− P (N = 0)− P (N = 1) = 1− e−3 − 3e−3 = 1− 4e−3 ≈ 0.8006 = 80.06%
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Example 3.22. If Y = Pois(2), find P (1 ≤ Y ≤ 3).

P (1 ≤ Y ≤ 3) = P (Y = 1) + P (Y = 2) + P (Y = 3) =
2e−2

1
+

4e−2

2
+

8e−2

6
=

16

3e2

Example 3.23. If W ∼ Pois(λ) and P (W = 0) = 1
2 , what is E[W 2 −W ]?

We wish to rewrite E[W 2 −W ] into terms we are familiar with:

E[W 2 −W ] = E[W 2]− E[W ] = E[W 2]− (E[W ])2 + (E[W ])2 − E[W ]

= Var(W ) + (E[W ])2 − E[W ] = (E[W ])2 = λ2

Use what we are given for P (W = 0) to find λ:

e−λλ
0

0!
=

1

2
⇐⇒ eλ = 2 ⇐⇒ λ = ln 2

Therefore, E[W 2 −W ] = (ln 2)2

Example 3.24. The number of Supreme Court judges who die each year is 0.1. What
is the probability that a president will be able to replace a Supreme Court judge during a
4 year term?

Let N = the number of Supreme Court deaths in 4 years. Then, λ = E[N ] = 0.4. We
want to find P (N ≥ 1).

P (N ≥ 1) = 1− P (X < 1) = 1− P (X = 0) = 1− e−0.4 ≈ 32.97%

Example 3.25. The average number of times Amazon ships the wrong package to a
particular customer in a given year is 2. What is the probability that they ship at least 3
wrong people?

We know λ = E[N ] = 2 and therefore N ∼ Pois(2). We want to find P (X ≥ 3):

P (X ≥ 3) = 1− P (X < 3) = 1− P (X = 0)− P (X = 1)− P (X = 2)

= 1− e−2 − 2e−2

1!
− 22e−2

2!
= 1− 5

e2
≈ 32.3%

While is this mostly irrelevant, there is a neat connection between Poisson and Binomial
variables.
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Theorem 3.26 (Binomial and Poisson Equivalence). For small values of p and large
values of n,

Binom(n, p) ≈ Pois(np)

Recall that Binomial distributions operate under a finite number of small-chance trials
and Poisson distributions count the number of rare independent events. The theory
states in practice, when you have many small-chance trials, these two situations are
basically the same!

Suppose n is very large and p is extremely small. Then

� The expected number of successes λ = np is moderate

� It’s very unlikely two successes happen in the same “small cross-section” of trials

� Each success is like a rare event occurring independently of the others

. . . such is the basis of a Binomial distribution!

Example 3.27. Scientists are testing for a very rare disease that has a 0.1% chance of
being found in each person. If they test 1000 people, what is the probability that at least
1 has it?

We will calculate the probability with both Binomial and Poisson distributions and find
that the results are equivalent:

X = Binom(1000, 0.001) Y = Pois(1000(0.001)) = Pois(1)

P (X ≥ 1) = 1− P (X = 0) = 1−
(
1000
0

)
(0.001)0(.999)1000 ≈ 0.632

P (Y ≥ 1) = 1− P (Y = 0) = 1− e−1 ≈ 0.632

Suppose we had two independent Poisson distributions. How are they summed?

Example 3.28. If X is Poisson with mean 1.7 and Y is an independent Poisson with
mean 1.3, find (a) E[X + Y ], (b) Var(X + Y ), (c) P (X + Y = 2)

(a) E[X + Y ] = E[X] + E[Y ] = 1.7 + 1.3 = 3

(b) Var(X + Y ) = Var(X) + Var(Y ) = E[X] + E[Y ] = 3 by independence.

(c) Find all combinations in which X + Y = 2:

P (X + Y = 2) = P (X = 0, Y = 2) + P (X = 1, Y = 1) + P (X = 2, Y = 0)

= e−1.7 1.3
2

2
e−1.3 + 1.7e−1.7 · 1.3e−1.3 +

1.72

2
e−1.7e−1.3
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= 4.5e−3 = 22.4%

The upcoming theorem will show that the answer in the previous example is consistent
with X + Y ∼ Pois(3).

Theorem 3.29 (Sums of Poisson Variables). If N ∼ Pois(λ),M ∼ Pois(µ) and they
are independent, then

P (N +M = n) = e−(λ+µ) · (λ+ µ)n

n!

Proof.

P (N +M = n) =

n∑
k=0

P (N = k)P (M = n− k)

=

n∑
k=0

e−λ · λ
k

k!
· e−µ · µn−k

(n− k)!

= e−(λ+µ)

(
n∑

k=0

λkµn−k

k!(n− k)!
n!

)
· 1

n!
=

e−(λ+µ)

n!

n∑
k=0

λk · µn−k

(
n
k

)
The summation is equal to the binomial expansion (λ+ µ)n by Theorem 2.17.

P (N +M = n) = e−(λ+µ) · (λ+ µ)n

n!
= P (Pois(λ+ µ) = n)

The results from the theorem and previous example can be generalized to multiple
Poissons. If N1, . . . , Nk are independent Poissons, then their sum is also Poisson.
Moreover,

E
[∑

Ni

]
=
∑

E[Ni]

Example 3.30. The number of accidents per day at a busy intersection has a Poisson
distribution with mean 0.5 during a workday and 0.3 during a weekend day. If the number
of accidents on different days is independent, what is the probability that there will be
exactly three accidents at the intersection during a week?

The sum of independent Poisson variables is also a Poisson variable, so the number of
accidents per week is a Poisson with mean 5(0.5) + 2(0.3) = 3.1.

P (N = 3) = e−λλ
3

3!
= e−3.1 (3.1)

3

3!
≈ 22.37%
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Below is a table summarizing key properties of the Geometric, Negative Binomial, and
Poisson Distributions.

Disclaimer: We assume the series start at 0 for Geometric and Negative Binomial. This
only affects the expected value.
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4 Deductibles and Limits

Now, we are going to apply some probability into basic insurance methods.

4.1 Deductibles

In general, a deductible is the amount of money one must pay out-of-pocket before the
rest is covered by your insurance provider. They are common among most health, auto,
and home insurances.

Here’s how deductibles operate:

1. If you are under insurance, you are responsible for the initial costs until your total
payments reach the deductible amount.

2. Once your payments clear the deductible, insurance will cover any remaining costs.

3. Most deductibles are based annually, meaning you must meet the deductible
amount each year.

How can we express this mathematically?

Definition 4.1 (Payment, Uncovered Cost, Total Loss). Suppose X represents the
amount of a loss. If there is a deductible of d, then the resulting (insurance) payment
is

Payment = (X − d)+ =

{
0, X ≤ d

X − d, X > d

The uncovered cost to the insured, or the expense not protected/paid for by insurance
policy is

Uncovered Cost = min{X, d} = X ∧ d =

{
X, X ≤ d

d, X > d

Lastly, the total loss is the sum of the insurance payment and uncovered cost:

X = (X − d)+ + (X ∧ d)

Note that min{X, d} and X ∧ d are equivalent notation-wise.

For instance, a health-care provider might offer insurance plans with annual deductibles
of $3000. Once these costs are covered, they will pay the rest. If a surgery costs $7000 for
a certain year, then insurance will cover $4000, assuming no other payments were made.
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Example 4.2. Suppose that loss amounts are uniform on {1, 2, 3, 4, 5} and that there
is a deductible of 2. What is the expected payment? What is the probability that the
uncovered loss will be 2?

We will construct a table to summarize the probability, payment, and uncovered loss

x P (X = x) Payment Uncovered Loss

1 1/5 0 1

2 1/5 0 2

3 1/5 1 2

4 1/5 2 2

5 1/5 3 2

E[Payment] =

(
0 · 1

5

)
+

(
0 · 1

5

)
+

(
1 · 1

5

)
+

(
2 · 1

5

)
+

(
3 · 1

5

)
=

6

5
= 1.2

P (Uncovered Loss = 2) =
4

5

Theorem 4.3 (Expected Payment). Suppose X represents the amount of a loss.
Then,

E[(X − d)+] = E[X]− E[X ∧ d]

This is very straightfoward to prove, recalling that X = (X − d)+ + (X ∧ d). There are
often fewer possible values for the uncovered loss than for the payment, which means it is
often easier to find E[X ∧ d] than E[(X − d)+]. This is why we rearrange the terms to
solve for the expected payment.

WARNING! This only applies to first moments. It is not true that

X2 = (X − d)2+ + (X ∧ d)2 and E[X2] = E[(X − d)2+] + E[(X ∧ d)2]

Example 4.4. A farm is insured against tornado damage. During tornado season, each
week has either 0 or 1 tornadoes, with a probability of 0.3 of having a tornado. The policy
pays $100 per tornado, with an annual deductible of $50. Tornado season is 8 weeks long
and the number of tornadoes in different weeks are independent. Find the expected annual
insurance payment.

Let N be the number of storms, and X = 100N be the total loss. The uncovered loss is
either 0 (if there are no tornadoes) or 50 (if there is at least 1 tornado).

E[X ∧ 50] = 0 · P (N = 0) + 50 · P (N ≥ 1) = 50(1− 0.78) ≈ 47.12

E[X] = 100E[N ] = 100 · 8 · 0.3 = 240
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Therefore, the expected insurance payment is

E[Payment] = 240− 47.12 = $192.88

Example 4.5. The number of annual N is a geometric on {0, 1, 2, . . .} with mean 2.
Losses are insured $100 each, with an annual deductible of $150. Find the expected annual
payment.

Recall that the mean of a geometric series, given probability p, is

E[N ] = 2 =
1− p

p
⇐⇒ p =

1

3

If N = 1, then we owe $100. However, if N ≥ 2, then we clear the deductible of $150 and
the rest is paid for by insurance.

E[Uncovered Loss] = 0 · P (N = 0) + 100P (N = 1) + 150P (N ≥ 2)

= 100p(1− p) + 150(1− p)2 = 88.9

E[Payment] = E[Total Loss]− E[Uncovered Loss] = 2(100)− 88.9 = 111.1

P (N ≥ 2) = (1− p)2 is just the number of minimum failures.

4.2 Policy Limits

Another way for the payment to be less than the total loss is to have a policy limit.

Definition 4.6 (Policy Limit). Let X be the loss amount, and u the policy limit. With
no deductible,

Payment =

{
X, X ≤ u

u, u < X

In this case, Payment = min{X,u} = X ∧ u.

With a deductible of d and a limit of u, then there are different types of limits. Generally,
u is the maximum payment allowed. In that case,

Payment =


0 X ≤ d

X − d d < X ≤ d+ u

u d+ u < X

The expected payment is also called the net premium or the benefit premium.

48



Ryan Gomberg Probability Notes Page 49 of 138

Example 4.7. The number of annual losses is Poisson with mean 2.4. Each loss results
in 50 in damages. Total annual claims are insured with a payment limit of 75. Find the
expected annual payment.

Let N be the number of losses. The payment is 0 when N = 0, 50 when N = 1, and 75
when N ≥ 2.

E[Payment] = 50P (N = 1) + 75P (N ≥ 2)

= 50
(
2.4e−2.4

)
+ 75

(
1− e−2.4 − 2.4e−2.4

)
= $62.75

Example 4.8. Loss amounts X have a binomial distribution with n = 5 and p = 0.4.
If there is a deductible of 1 and a payment limit of 3, find the expected payment for a
randomly selected loss.

x 0 1 2 3 4 5

P (X = x) (0.6)5 5(0.4)(0.6)4 10(0.4)2(0.6)3 10(0.4)3(0.6)2 5(0.4)4(0.6) (0.4)5

Payment 0 0 1 2 3 3

Uncovered Loss 0 1 1 1 1 2

E[Payment] = 0.3456 + 2(0.2304) + 3(0.0678 + 0.0102) = 1.06752

Alternatively, we can compute E[X]− E[Uncovered Loss]

E[Uncovered Loss] = 1 ·
(
1− (0.6)5 − (0.4)5

)
+ 2(0.4)5 = 0.93248

E[X]− E[Uncovered Loss] = (5 · 0.4)− 0.93248 = 1.06752
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5 Continuous Distributions and Densities

Some random variables are not discrete. Anytime you can have uncountably many
possible outcomes (such as those within a given interval), we must shift our focus to using
integrals.

This section highlights key differences between discrete and continuous random variables,
as well as discovering properties of continuous distribution functions.

Disclaimer: This section assumes we are well acquainted with basic one-dimensional
calculus (limits, derivatives, evaluating integrals with substitution and by parts)

5.1 Overview

As a motivation, we will compare discrete and continuous uniform cases.

Example 5.1. Let N be an integer uniformly chosen from {1, 2, . . . , 100} and let X be
a real number chosen from (0, 100). Then

P (N = n) =
1

100
and P (N ≤ n) =

n

100
n = 1, 2, 3, . . . , 100

As for the continuous case,

P (X = x) = 0 for all x, P (X ≤ x) =
x

100
0 ≤ x ≤ 100

The cumulative distribution function (CDF) F (x) = P (X ≤ x) still makes sense for
continuous distributions, and will still be useful.

Additionally, for a purely continuous function, P (X = x) = 0. There will be a more
intuitive reason for this later.

For discrete random variables, we often summed expressions that involved P (X = x) such
as

E[X] =
∑

xP (X = x)

As alluded to earlier, we will need integrals for continuous variables and the sums will
become the “density” of X. f(x) will replace P (X = x) in most formulas. For example,

E[X] =

∫
xf(x)dx

More on this later.

Not all distributions are purely discrete or purely continuous! A mixed distribution
blends them together. For instance, we can add deductibles and limits (discrete) to
continuous loss amounts.
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Example 5.2. Losses X are uniformly distributed on (0, 100). Let Y be the payment
amount after a deductible of 30 is applied to the loss.

The deductible of 30 means that Y = 0 if the loss X is less than 30, and Y = X − 30 if
the loss exceeds 30. Therefore, X = Y + 30 and

P (Y = 0) = P (X ≤ 30) =
30

100

P (Y = y) = 0 for y > 0

P (Y ≤ y) = P (X ≤ y + 30) =
y + 30

100
for 0 < y < 70

Y has a discrete piece, where the chance of being 0 is 30
100 , and a continuous piece (from 0

to 70), and the CDF makes sense everywhere.

Example 5.3. IfN is uniform on {1, 2, 3, 4, 5} andX is uniform on (0, 5), find P (N ≤ 2.3)
and P (X ≤ 2.3).

P (N ≤ 2.3) = P (N = 1) + P (N = 2) =
2

5

P (X ≤ 2.3) =
2.3

5
= 0.46

Example 5.4. Loss amounts are uniform on the interval (0, 6) and insured with a
deductible of 1.6. Find the probabilities that (a) the payment for a randomly chosen loss
is 0 and (b) the payment for a randomly chosen loss is less than 2.

Let X denote the amount of a randomly chosen loss, and Y the corresponding payment.

(a)

P (Y = 0) = P (X ≤ 1.6) =
1.6

6
≈ 26.67%

(b)

P (Y ≤ 2) = P (X ≤ 2 + 1.6) = P (X ≤ 3.6) =
3.6

6
= 60%

5.2 Densities and CDFs

Generally if X can reach any possible value between (a, b), the probability of it being
exactly one of those numbers becomes infinitely small, and we say P (X = t) = 0. Instead,
we focus on the cumulative distribution function.
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Definition 5.5. The cumulative distribution function (CDF) of X is given by

F (x) = FX(x) = P (X ≤ x).

This applies to all random variables, whether they have discrete, continuous, or mixed
distributions.

If Fx is differentiable, its derivative

fX(t) = F ′(x)

is referred to as the density of X. By the Fundamental Theorem of Calculus, the CDF is
then

F (x) =

∫ x

−∞
f(y)dy

In the discrete case, F (x) = P (X ≤ x) =
∑
y≤x

P (X = y). In most formulas, f(y)dy will

take the place of P (X = y). In some sense, f(y)dy “=” P (y < X ≤ y + dy).

Corollary 5.6 (Properties of CDFs). The cumulative distribution function satisfies

1. 0 ≤ F (x) ≤ 1

2. If x ≤ y then F (x) ≤ F (y)

3. lim
x→∞

F (x) = 1

4. lim
x→−∞

F (x) = 0

Corollary 5.7 (Properties of Densities). For continuousX, the density fX(t) satisfies

1. f(x) ≥ 0

2. There need not be an upper bound for f(x)

3.
∫∞
−∞ f(x)dx = 1

4.
∫ b
a f(x)dx = P (a < X ≤ b) = F (b)− F (a)

Each item should feel intuitive. Since F (x) is a probability function, its range must be 0
to 1. Probabilities will only increase as we widen the range of our interval. The total
probability, over the entire x-axis, will approach 1. Lastly, if the bounds of the integrals
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are equal, the integral becomes 0.

f(x) needs to be strictly non-negative. Probabilities are obtained by taking the area
under f(x). If f(x) is negative anywhere, then there exists an interval in which the
probability is negative.

Example 5.8. Suppose X is uniform on (0, 0.1). What are F (x) and f(x)?

One way to approach this is to come up with f(x) such that its area from 0 to 0.1 is
equal to 1. We already know X is uniform, so the values on f must be equal on that
range. Say c is this constant, then

F (x) =

∫ 0.1

0
cdx = 1 =⇒ [cx]0.10 = 1 ⇐⇒ 0.1c = 1 ⇐⇒ c = 10

We have effectively found both F (x) and f(x), since F is the definite integral of f .

F (x) =


0 x < 0

10x 0 ≤ x ≤ 0.1

0 x > 0.1

f(x) = F ′(x) =


0 x < 0

10 0 < x < 0.1

0 0.1 < x

Example 5.9. A modeled random variable X has the density function

f(x) =

{
cx2 0 ≤ x ≤ 3

0 otherwise

Compute the probability P (1 ≤ X ≤ 2).

We adopt a similar approach to the previous example, where we first want to solve for the
constant. Item (3) from Corollary 5.7 is the key component into doing so. Because f(x)
is only defined on [0, 3], it follows that∫ ∞

−∞
f(x)dx = 1 ⇐⇒

∫ 3

0
cx2dx = 1

Evaluate the integral to solve for c:[ c
3
x3
]3
0
= 1 ⇐⇒ 9c = 1 ⇐⇒ c =

1

9

Therefore, F (x) = 1
9 · 1

3x
3 = 1

27x
3 and

P (1 ≤ X ≤ 2) = F (2)− F (1) =
7

27

by item (4) of Corollary 5.7.
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Example 5.10. The CDF of X satisfies

F (x) =


0 x < 1

(x− 1)− 1
4(x− 1)2 1 ≤ x < 3

1 3 ≤ x

Find P (X ≤ 2), P (1.5 < X ≤ 2), and f(x).

P (X ≤ 2) = F (2) = 1− 1

4
=

3

4

P (1.5 < X ≤ 2) = F (2)− F (1.5) =
3

4
−
(
1

2
− 1

16

)
= 0.3125

f(x) = F ′(x) =


0 x < 1

1− 1
2(x− 1) 1 < x < 3

0 3 < x

Example 5.11. A continuous random variable Y has density f(y) = 2
y3

for 1 < y < ∞
and f(y) = 0 otherwise. Find a formula for the CDF F (y) and find P (Y ≤ 4 | Y > 2).

Once again, f(y) is only defined when y > 1. So,

F (y) =

∫ y

−∞
f(t)dt =

∫ y

1

2

t3
dt =

[
− 1

t2

]y
1

= 1− 1

y2

P (Y ≤ 4 | Y > 2) can be computed using what we know about conditional probability. If
A = P (Y ≤ 4) and B = P (Y > 2), then P (A ∩B) = P (2 < Y ≤ 4).

P (Y ≤ 4 | Y > 2) =
P (A ∩B)

P (B)
=

P (2 < Y ≤ 4)

P (Y > 2)
=

P (2 < Y ≤ 4)

1− P (Y ≤ 2)

=
F (4)− F (2)

1− F (2)
=

15
16 − 3

4
1
4

=
3

4

Definition 5.12 (Percentiles and Medians). x is a k-th percentile of X if F (x) =
k%. The median is the 50th percentile, so F (x) = 0.5 at the median.

We will only work in scenarios where there is a unique median, or where there is only one
point x such that F (x) = k%.
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Example 5.13. Refer to the CDF in Example 5.9. Where is the 25th percentile? Median?

The 25th percentile satisfies F (x) = 0.25

1

27
x3 =

1

4
⇐⇒ x3 =

27

4
⇐⇒ x25% ≈ 1.89

Similarly, the median satisfies F (x) = 0.5

1

27
x3 =

1

2
⇐⇒ x3 =

27

2
⇐⇒ x50% ≈ 2.38

As a sanity check, we know both percentiles are within [0, 3] and their integrals will come
out to 0.25 and 0.5.

5.3 Mixed Distributions

As mentioned previously, a lot of mixed distributions will manifest by merging
deductibles and benefit limits with continuous loss functions.

Suppose an insurance policy has a deductible of d and a payment limit of u. A customer /
insured has a loss of L.

� Insured is responsible for the first d of loss

� Insurance company / insurer pays for portion of loss that exceeds d up to a total
payment u

� Insured is responsible for the rest

If L < d Insurance payment = 0

If d ≤ L ≤ d+ u Insurance payment = L− d

If d+ u < L Insurance payment = u

Remember that (1) the payment ALWAYS refers to the payment made by the insurer
and (2) the premium is ALWAYS paid by the insured/client to the insurer.

Example 5.14. Suppose that loss amounts X have density f(x) = 0.02x, 0 < x < 10. If
there is a deductible of 2 and a maximum payment of 6, then what is the probability of a
payment of 5 or less? What is the probability of a payment of 6?

Since the deductible is 2, the insurer does not begin paying until the loss exceeds 2.
Therefore, a payment of 5 occurs when loss is equal to 7.

P (Payment ≤ 5) = P (X ≤ 7) =

∫ 7

0
0.02xdx = 0.01(72) = 0.49

A payment of 6 occurs when the loss is equal to 8. This is also the maximum payment, so
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the payment is also equal to 6 if the loss exceeds 8. We integrate from 8 to 10 because
the loss density function is only defined from (0, 10).

P (Payment = 6) = P (X ≥ 8) =

∫ 10

8
0.02dx = 0.01(102 − 82) = 0.36

Example 5.15. Losses, if they occur, are uniformly distributed on the interval (100,
500). If there is a 60% probability of no loss and a 40% probability of exactly one loss,
what is the CDF of the total loss amount?

Let L denote the loss amount. It follows that P (L < 100) = P (L = 0) = 0.6 and
P (L > 500) = 1. Our CDF would then be

FL(x) =


0 x < 0

0.6 0 ≤ x < 100

??? 100 ≤ x < 500

1 x ≥ 500

In a previous example, we used a unknown constant approach to find the CDF for a
uniform density. Let’s try it here. We know that on [100, 500], f(x) = 0.4.∫ 500

100
cdx =

2

5
⇐⇒ [cx]500100 = 0.4 ⇐⇒ c =

1

1000

What we found is the slope. To make FL continuous, we must shift x by the upper
bound, 500. Therefore,

FL(x) =


0 x < 0

0.6 0 ≤ x < 100
x+500
1000 100 ≤ x < 500

1 x ≥ 500

Alternatively, we could solve this through conditional probability. If 100 ≤ x < 500,

P (L ≤ x) = P (no loss) + P (L ≤ x ∩ have a loss)

= P (no loss) + P (loss) · P (L ≤ x | have a loss)

The probability of the loss being less than x, given that you have a loss, is equivalent to
the difference between x and 100 over the length of [100, 500].
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Plainly, the probability is the proportion of the subset length (x− 100) over the original
set length (400). This will return a set of probabilities between 0 to 1, and we multiply
by 0.4 to extract the range of 0 to 0.4.

FL(x) = 0.6 + 0.4

(
x− 100

500− 100

)
= 0.6 + 0.4

(
x− 100

400

)
Both results are equivalent.

The main goal of this example was to interpolate two points (x = 100, x = 500) that
made our piecewise-defined loss density function continuous while abiding by the
uniformity between these two points.

If X is purely continuous, then

∫ ∞

−∞
f(x)dx = 1, and F (x) is continuous.

If F (x) is defined piecewise, it may not be continuous and we may have a mixed
distribution. The following example is just one of many scenarios when F (x) is not
continuous:
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Example 5.16. Suppose X has CDF

F (x) =


0 x < 0
1
3 0 ≤ x ≤ 1

2
x2+1
2

1
2 ≤ x < 1

1 1 ≤ x

Then F (0) = 1
3 and F

(
1
2

)
= 5

8 .

There is no jump discontinuity at 1 because
the one-sided limits are equal at that point.

Jump discontinuities are points with
non-zero probability.

P (X = 0) =
1

3
= 0 P

(
X =

1

2

)
=

5

8
− 1

3

Moreover,

f(x) = F ′(x) =
d

dx

(
x2 + 1

2

)
= x

Example 5.17. An insurance policy pays for a random loss X subject to a deductible
of d. The loss amount is a continuous random variable with density function

f(x) =

{
2x 0 < x < 1

0 otherwise

For a random loss X, the probability that the insurance payment is less than 0.3 is equal
to 0.49. Find d.

P (Payment ≤ 0.3) = P (Loss ≤ 0.3 + d)

0.49 =

∫ 0.3+d

0
f(x)dx =

∫ 0.3+d

0
2xdx ⇐⇒ 0.49 = (0.3 + d)2

0.7 = 0.3 + d ⇐⇒ d = 0.4
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Example 5.18. A random variable X has CDF

F (x) =


0 x < 1
(x−1)2

5 1 ≤ x < 3

1 3 ≤ x

Find P (X = 1), P (X = 3), and f(x) for 1 < x < 3

One can verify that F is continuous except for x = 3. Therefore, P (X = 1) = 0 because

the probability at a single point is zero (if the function is continuous at that point).
However, there is a jump discontinuity at x = 3.

P (X = 3) = F (3)− lim
x→3

F (x) = 1− (3− 1)2

5
=

1

5

f(x) = F ′(x) =
2(x− 1)

5
for 1 < x < 3

The following example is a sample SOA exam question concerning deductibles and CDFs:

Example 5.19 (SOA Practice Exam Q119). Damages to a car in a crash are modeled
by a random variable with density function{

c(x2 − 60x+ 800) 0 < x < 20

0 otherwise

where c is a constant. A particular car is insured with a deductible of 2. This car was
involved in a crash with resulting damages in excess of the deductible. Calculate the
probability that the damages exceeded 10.

Solve for c by setting the integral equal to 1.∫ 20

0
c(x2−60x+800) = 1 ⇐⇒ c

[
1

3
x3 − 30x2 + 800x

]2
0

0 = c

(
8000

3
− 12000 + 16000

)
20000

3
c = 1 ⇐⇒ c =

3

20000
=⇒ F (x) =

3

20000

(
1

3
x3 − 30x2 + 800x

)
“In excess of the deductible” implies that the loss exceeds 2. So, we want to compute the
probability P (X > 10 | X > 2). We’ll use the survival method to compute the
probabilities:

P (X > 10 | X > 2) =
P (X > 10)

P (X > 2)
=

1− F (10)

1− F (2)
≈ 0.2572 = 25.72%

The probabilities could also be computed through integrals (10 to 20) and (2 to 20).
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5.4 Moments of Continuous/Mixed Distributions

Mean and variance translate nicely from discrete to continuous. Recall for discrete
variables,

E[X] =
∑

xP (X = x)

Definition 5.20 (Mean/Variance of Continuous Random Variables). If X is
random variable whose density function f(x) is purely continuous, then

E[X] =

∫
x
xf(x)dx

Once again, if g is a function of X, then

E[g(X)] =

∫
x
g(x)f(x)dx

The discrete formula for variance also applies to continuous functions.

Var(X) = E[X2]− (E[X])2 =

∫
x
x2f(x)dx−

(∫
x
xf(x)dx

)2

Example 5.21. A random variable X has density 3x2 for 0 < x < 1. Find its mean and
variance.

E[X] =

∫ 1

0
3x3dx =

[
3

4
x4
]1
0

=
3

4

E[X2] =

∫ 1

0
3x4dx =

[
3

5
x5
]1
0

=
3

5

Var(X) = E[X2]− (E[X])2 =
3

5
−
(
3

4

)2

=
3

80

Example 5.22. If Y has density f(y) = 1− 0.5y for 0 < y < 2, and f(y) = 0 otherwise,
find E[Y ] and Var(Y ).

E[Y ] =

∫ 2

0

(
y − 1

2
y2
)
dy =

[
1

2
y2 − 1

6
y3
]2
0

= 2− 4

3
=

2

3

E[Y 2] =

∫ 2

0

(
y2 − 1

2
y3
)
dy =

[
1

3
y3 − 1

8
y4
]2
0

=
8

3
− 2 =

2

3
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Var(Y ) = E[Y 2]− (E[Y ])2 =
2

3
− 4

9
=

2

9

Example 5.23 (SOA Practice Exam Q129). The proportion X of yearly dental
claims that exceed 200 is a random variable with probability density function

f(x) =

{
60x3(1− x)2 0 < x < 1

0 otherwise

Calculate Var
(

X
1−X

)
.

We want to compute the following items: E
[

X
1−X

]
, E
[

X2

(1−X)2

]
, and

(
E
[

X
1−X

])2
E

[
X

1−X

]
=

∫ 1

0
60

(
x

1− x

)
x3(1− x)2dx =

∫ 1

0
60x4(1− x)dx

=

∫ 1

0
(60x4 − 60x5)dx =

[
12x5 − 10x6

]1
0
= 2

E

[
X2

(1−X)2

]
=

∫ 1

0
60

(
x2

(1− x)2

)
x3(1− x)2dx =

∫ 1

0
60x5dx =

[
10x6

]1
0
= 10

Var

(
X

1−X

)
= E

[
X2

(1−X)2

]
−
(
E

[
X

1−X

])2

= 10− 22 = 6

What if we have mixed distributions?

1. Use the discrete formula on discrete piece

2. Use the continuous formula on the continuous piece

3. Sum the two parts

Example 5.24. Find the mean and variance of X if

F (x) =


0 x < 1
x2−2x+2

2 1 ≤ x < 2

1 x ≥ 2

There is a jump from 0 to 1
2 as x → 1. So, P (X = 1) = F (1)− lim

x→1−
F (x) =

1

2
. F is

continuous at x = 2 because their one-sided limits are equal.

We also need to compute f(x) in order to find E[X].

f(x) = F ′(x) = x− 1 for 1 < x < 2
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E[X] = 1 · P (X = 1) +

∫ 2

1
x(x− 1)dx =

1

2
+

[
x3

3
− x2

2

]2
1

=
1

2
+

(
8

3
− 2

)
−
(
1

3
− 1

2

)
=

7

3
− 1 =

4

3

For the variance,

E[X2] = 12 · P (X = 1) +

∫ 2

1
x2(x− 1)dx =

1

2
+

∫ 2

1
(x3 − x2)dx

=
1

2
+

[
1

4
x4 − 1

3
x3
]2
1

=
1

2
+

(
4− 8

3

)
−
(
1

4
− 1

3

)
=

1

2
+

4

3
+

1

12
=

23

12

Var(X) =
23

12
−
(
4

3

)2

=
5

36

Example 5.25. Suppose that X is a mixed random variable such that P (X = 3) = 0.5
and X has density f(x) = x for 0 < x < 1, and 0 otherwise. Find E[X] and E[X2].

E[X] = 3P (X = 3) +

∫ 1

0
x2dx =

3

2
+

[
1

3
x3
]1
0

=
11

6

E[X2] = 32P (X = 3) +

∫ 1

0
x3dx =

9

2
+

[
1

4
x4
]1
0

=
19

4

5.5 The Survival Function Approach

In some cases, it may be easier to find the mean of a CDF using the survival function.

Theorem 5.26 (Mean of a CDF). Suppose that P (X ≥ 0) = 1 and X is continuous.
Then

E[X] =

∫ ∞

0
P (X > x)dx

Proof. We start with the continuous analog of E[X]:

E[X] =

∫ ∞

0
xf(x)dx

Using integration by parts,

u = x =⇒ du = dx dv = f(x)dx =⇒ v = F (x)− 1

Subtracting 1 from F (x) will avoid us having problems at infinity and cause us the least
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trouble moving forward. It also satisfies dv = f(x)dx.

E[X] =

∫ ∞

0
xf(x)dx = [uv]∞0 −

∫ ∞

0
(v)du = [x(F (x)− 1)]∞0

At x = 0, x(F (x)− 1) = 0. At x = ∞, F (∞)− 1 = 1− 1 = 0. This leaves us only needing
to evaluate

−
∫ ∞

0
(F (x)− 1)dx =

∫ ∞

0
(1− F (x))dx =

∫ ∞

0
P (X > x)dx = E[X]

as desired.

So, for continuous, non-negative X,

E[X] =

∫ ∞

0
P (X > x)dx

This actually holds for all non-negative random variables, including discrete and mixed
distributions. For discrete distributions,∫ n+1

n
P (X > x)dx = P (X > n)

∫ ∞

0
P (X > x)dx =

∞∑
n=0

P (X > n)

It holds that for any non-negative variable (continuous, mixed, or discrete), if g(0) = 0,
then

E[g(X)] =

∫ ∞

0
g′(x)P (X > x)dx

Unfortunately, this is rarely useful.

Advantages of Survival Method

� Often saves some steps, especially if F (x) is given but f(x) is not.

� Often faster for mixed distributions.

� Often gives nicer integrals (e.g., if f(x) = e−x, integrating xf(x) requires
integration by parts, but the survival method does not.

Disadvantages of Survival Method

� Because the integral starts at 0, it can be messier.

� If f(x) is directly given, finding P (X > x) can require an extra step.

There are multiple instances where we have already employed the survival function. See
Examples 5.11 and 5.19 as references.
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Example 5.27 (Example 5.24 Revisited). Find the mean and variance of X if

F (x) =


0 x < 1
x2−2x+2

2 1 ≤ x < 2

1 x ≥ 2

E[X] =

∫ ∞

0
P (X > x)dx =

∫ ∞

0
(1− F (x))dx

=

∫ 1

0
(1− 0)dx+

∫ 2

1

2x− x2

2
dx+

∫ ∞

2
(1− 1)dx = 1 +

[
x2

2
− x3

6

]2
1

+ 0 =
4

3

E[X2] =

∫ ∞

0

d

dx
(x2)P (X > x)dx =

∫ ∞

0
2x(1− F (x))dx

=

∫ 1

0
2xdx+

∫ 2

1
2x · 2x− x2

2
dx+

∫ ∞

2
0dx

= [x2]10 +

[
2

3
x3 − 1

4
x4
]2
1

= 1 +

(
16

3
− 2

)
−
(
2

3
− 1

4

)
=

23

12

Var(X) = E[X2]− (E[X])2 =
23

12
− 16

9
=

5

36

Example 5.28. Suppose X has density f(x) =
3(100)3

(x+ 100)4
for 0 < x < ∞ and 0

otherwise. Find E[X].

One approach is through the standard definition of E[X] and integrating through u-sub.
However, we will use the survival method−it is just automating integration by parts!

f(x) =
3(100)3

(x+ 100)4

P (X > x) =

∫ ∞

x

3(100)3

(t+ 100)4
dt =

[
− (100)3

(t+ 100)3

]∞
x

=
(100)3

(x+ 100)3

E[X] =

∫ ∞

0

(100)3

(x+ 100)3
dx =

[
−1

2
· (100)3

(x+ 100)2

]∞
0

= 50

Example 5.29. Use the survival approach to find E[X] if the CDF of X is

F (x) =

{
1− (100)3

x3 x > 100

0 x ≤ 100
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E[X] =

∫ ∞

0
P (X > x)dx =

∫ ∞

0
(1− F (x))dx

=

∫ 100

0
(1− 0)dx+

∫ ∞

100

(100)3

x3
dx = 100−

[
(100)3

2x2

]∞
100

= 100 + 50 = 150

What if we computed E[X] by finding the density function?

f(x) =
3(100)3

x4
x > 100

E[X] =

∫ ∞

100

3(100)3

x3
dx = −3

2

[
(100)3

x2

]∞
100

= 150
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6 Key Continuous Distributions

In this section, we will be going over a myriad of continuous distributions used
everywhere!

1. (Continuous) Uniform Random Variables

2. Exponential Random Variables

3. Gamma Random Variables

4. Beta and Pareto Random Variables

6.1 Continuous Uniform Distributions

Pick a point X uniformly between 0 and 10.

Using set notation,

P (X ∈ A) =
length of A

total length

for 0 < x < 10. We can find the CDF and thus density by

P (X ≤ x) = F (x) =
x

10
f(x) = F ′(x) =

1

10
=

1

total length

More generally, if X is uniform on S,

P (X ∈ A) =
length (or area) of A

length (or area) of S
density =

1

length of S

If X is uniform on (a, b)

f(x) =
1

b− a
F (x) =

x− a

b− a
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To set us up for moments of this distribution, let us compute the mean and variance of
Uniform(0, 1). If X ∼ Uniform(0, 1),

f(x) =
1

1− 0
= 1

E[X] =

∫ 1

0
(x · 1)dx =

[
1

2
x2
]1
0

=
1

2
E[X2] =

∫ 1

0
(x2 · 1)dx =

[
x3

3

]1
0

=
1

3

Var(X) = E[X2]− (E[X])2 =
1

3
−
(
1

2

)2

=
1

12

Theorem 6.1 (Mean and Variance of Uniform Distributions). Let X ∼
Uniform(a, b). Then

E[X] =
a+ b

2
Var(X) =

(b− a)2

12

Proof. The idea is to shift from Uniform(0, 1) to a general uniform,

If X ∼ Uniform(a, b),

then X − a ∼ Uniform(0, b− a) =⇒ X − a

b− a
∼ Uniform(0, 1)

E

[
X − a

b− a

]
=

1

2
=⇒ 1

b− a
(E[X]− a) =

1

2

E[X] =
b− a

2
+ a =⇒ E[X] =

b+ a

2
= Average of endpoints

For the variance:

Var

[
X − a

b− a

]
= Var(Uniform(0, 1)) =

1

12

We use the property of variance Var(aX) = a2Var(X) on b− a:

Var

[
X − a

b− a

]
=

1

(b− a)2
Var(X − a)

Translations do not affect variances!

1

12
=

1

(b− a)2
Var(X) =⇒ Var(X) =

(b− a)2

12
=

(length of interval)2

12

With respect to discrete uniform variables, the expected value will be same for both, but
the variances are slightly different!
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Example 6.2. If N is uniform on {7, 8, 9, 10, 11, 12, 13}, find the mean and variance of
N .

Refer to Def 1.38 and Example 1.39 for the discrete formulas.

E[N ] =
7 + 13

2
= 10 Var(N) =

(number of possible vals)2 − 1

12
=

72 − 1

12
= 4

Suppose X is continuously uniform on [7, 13]. What is the mean and variance?

The mean is also 10.

Var(X) =
(13− 7)2

12
= 3

We can have mixed distributions with discrete and continuous uniforms. Raw moments
(e.g., mean, 2nd moment) can be broken up into pieces.

WARNING: Variance cannot be broken up into cases without an extra correction term.

E[X] =
∑
x

x · P (X = x)

and from the law of total probability (see Thm 1.14): if A1, A2, . . . is a list of all possible
cases

E[X] =
∑
all Ai

E[X | X ∈ Ai] · P [X ∈ Ai]

E[X2] =
∑
all Ai

E[X2 | X ∈ Ai] · P [X ∈ Ai]

E[g(X)] =
∑
all Ai

E[g(X) | X ∈ Ai] · P [X ∈ Ai]

We will mainly be incorporating this idea with deductibles.

Example 6.3. Losses X have a uniform distribution on [0, 100]. Losses are insured with
a deductible. At what level must a deductible be set in order for the expected payment to
be 40% of what it would be with no deductible?

We are given X ∼ U(0, 100), E[X] = 0+100
2 = 50, and d = deductible. Let Y be the

payment after the deductible. Then

Y =

{
0 X ≤ d

X − d X > d

We need d such that E[Y ] = 0.4(50) = 20.
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The first approach we can do is to set up the relevant integral for E[Y ]:

P (Y ≤ y) = P (X ≤ y + d) =
y + d

100
=⇒ fY (y) =

1

100
for y > 0

E[Y ] = 0 · P (Y = 0) +

∫ 100−d

0

y

100
dy =

[
y2

200

]100−d

0

=
(100− d)2

200

20 =
(100− d)2

200
⇐⇒ 4000 = (100− d)2 ⇐⇒ d = 36.75

A faster way to find E[Y ] is to split into two cases−X is at most the deductible and X
exceeds the deductible−and use the law of total probability.

E[Y ] = E[Y | X ≤ d] · P (X ≤ d) + E[Y | X > d]P (X > d)

If X ≤ d, Y = 0. If X > d, Y ∼ Uniform(d− d = 0, 100− d).

E[Y ] = 0 · P (X ≥ d) +
100− d

2
· 100− d

100

20 =
100− d

2
· 100− d

100
=

(100− d)2

200

This will yield the same answer of d = 36.75 .

Example 6.4. A homeowner insures their home against storm damage with an insurance
policy with a deductible of 50 florins. In the event of storm damage, repair costs are
modeled by a uniform random variable on the interval (0, 300). Find the standard deviation
of the insurance payment in the event that the home receives storm damage.

Let X = loss, Y = payment. If X ≤ 50, Y = 0. If X > 50, Y ∼ U(0, 250).

E[Y ] = 0 · P (X ≤ 50) +
0 + 250

2
· P (X > 50) = 125

(
300− 50

300

)
= 125 · 5

6
≈ 104.17

The procedure follows identically for E[Y 2]:

E[Y 2] = E[Y 2 | X ≤ 50] · P (X ≤ 50) + E[Y 2 | X > 50] · P (X > 50)

0 +
5

6
E[U2, U ∼ Uniform(0, 250)]

Rearranging the formula for variance gives

E[U2] = Var(U) + (E[U ])2

E[U2] =

(
(250)2

12
+

(
250

2

)2
)

≈ 20833.33 =⇒ E[Y 2] =
5

6
E[U2] ≈ 17361.11
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Var(Y ) = E[Y 2]− (E[Y ])2 = 17361.11− (104.17)2 ≈ 6509.72

SD(Y ) =
√
Var(Y ) ≈ 80.68

Try not to get Y and U switched up! U is the uniform distribution that is based on Y ,
and Y is the payment that is dependent on X.

Example 6.5. Loss amounts are uniform on (0, 20), and insured with a deductible of
3 and a payment limit of 12. Find the expected payment amount and variance of the
payment on a randomly selected loss.

Let X denote the loss and Y as the payment.

Y =


0 X ≤ 3

X − 3 3 < X ≤ 15

12 X > 15

E[Y ] = 0 · P (X < 3) + E[U(3− 3, 15− 3)] · P (3 < X ≤ 15) + 12P (X > 15)

=
12

2
· 3
5
+ 12

(
1

4

)
=

33

5
= 6.6

Now, we compute E[Y 2]

E[Y 2] = E[U2, U ∼ Uniform(0, 12)] · P (3 < X ≤ 15) + 122P (X > 15)

E[U2] = Var(U) + (E[U ])2 =
122

12
+

(
12

2

)2

= 48

E[Y 2] = 48

(
3

5

)
+ 144

(
1

4

)
=

144

5
+ 36 =

324

5
= 64.8

Var(Y ) = 64.8− (6.6)2 = 21.24

Example 6.6 (SOA Practice Exam Q336). Losses under an insurance policy are
uniformly distributed on the interval [0, 100]. A deductible is set so that the expected
claim payment of losses net of the deductible is 32. Calculate the deductible.

This is similar to Example 6.3. Let X denote the losses and Y be the payment, with
deductible d unknown. Then

Y =

{
0 X ≤ d

X − d X > d
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If X > d, then Y ∼ U(0, 100− d). Apply the law of total probability to E[Y ]:

E[Y ] = E[Y | X ≤ d]P (X ≤ d) + E[Y | X > d]P (X > d)

E[Y | X > d] is equivalent to finding E[U ] =
100− d

2
.

E[Y ] = 0 +
100− d

2
· 100− d

100
⇐⇒ 32 =

(100− d)2

200

Solving this equation gives d = 20 .

Here’s a standard approach to solving continuous uniform distributions with deductibles
and policy limits:

1. Construct a piecewise function for Y , which is a function of X. It will always be 0 if
X is less than the deductible. Add one element if there is a deductible, and two
elements if there are a deductible and payment limit.

2. Make a uniform distribution U on the length of the interval in which the insurer
is paying. This does include when after the payment limits kicks in!

3. Write an equation using the law of total probability to compute E[Y ] (or E[Y 2] for
the variance). The intervals and interval lengths of the piecewise function are useful
here to compute the relevant items.

4. You should be able to compute everything but E[U ] (or E[U2] for the variance).
Use the formula to find E[U ].

5. If you need to compute the variance, use the fact E[U2] = Var(U) + (E[U ])2, which
can be found easily. Then plug this in the equation for E[Y 2].

6.2 Exponential Random Variables

Definition 6.7 (Density and CDF of Exponential Distributions). X is an expo-
nential random variable with mean θ if

FX(x) = 1− e−
x
θ 1− F (x) = e−

x
θ

Sometimes λ = 1
θ will be called a rate instead of an exponential.

Fx(x) = 1− e−λx

f(x) = F ′(x) =
1

θ
e−

x
θ = λe−λx for x > 0
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Exponentials often are used to model waiting times (e.g., time between hits of a webpage,
time between rain drops, etc.)

Theorem 6.8 (Mean and Variance of Exponential Distributions). Suppose X
follows an exponential distribution. Then,

E[X] = θ Var(X) = θ2

Proof. We will use the survival function to prove the mean:

P (X > x) = 1− F (x) = e−
x
θ

E[X] =

∫ ∞

0
xf(x)dx =

∫ ∞

0
P (X > x) =

∫ ∞

0
e−

x
θ dx

=
[
−θe−

x
θ

]∞
0

= 0 + θ = θ

For the variance, use tabular integration to compute E[X2]:

E[X2] =

∫ ∞

0
x2 · 1

θ
e−

x
θ dx

E[X2] =
[
x2
(
−e−

x
θ

)
− (2x)

(
θe−

x
θ

)
+ 2

(
−θ2e−

x
θ

)]∞
0

At infinity, all terms will reduce to 0.

E[X2] = 2θ2

Var(X) = E[X2]− (E[X])2 = θ2

Therefore, Var(X) = (E[X])2.

We can think of exponential distributions as continuous analogs of geometric
distributions in two senses.

For a geometric, instead of Var(X) = (E[X])2,

Var(X) = E[Geo starting at 0]E[Geo starting at 1]

The second case is the memoryless property!
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Suppose X is an exponential random variable with mean θ

P (X > x) = e−
x
θ

What is P (X > x+ a | X > a)?

P (X > x+ a | X > a) =
P (X > x+ a,X > a)

P (X > a)
=

e−(x+a)/θ

e−a/θ

= e(−x−a)/θea/θ = e−
x
θ

i.e., P (X > x+ a | X > a) = P (X > x). Similarly, P (X − a > x | X > a) = P (X > x).

In other words, given that X > a, X − a has the same distribution as the original
variable X. This means that exponential distributions are no different than if a
translation is applied to them!

For example, if the time between buses is exponential with mean 15 minutes, the amount
of time I need to wait (X − a) is an exponential with mean 15 minutes no matter how
long it has been (a minutes since the last bus).

In an actuarial scenario, the key application is payment amounts X − d with a deductible
d conditioned on a payment being made (i.e. given X > d) have same distribution as
losses X.

E[X − a | X > a] = E[X] = θ

E[X | X > a] = E[X − a | X > a] + a = θ + a

Var(X | X > a) = Var(X − a | X > a) = Var(X)

Example 6.9. Loss amounts are exponential with rate 0.02. If losses are insured with a
deductible of 10, find the probability of a loss exceeding 40 given that a positive payment
is made.

Let X denote the loss amount and λ = 0.02 as the rate. X is exponential with mean
θ = 1

λ = 50. We want to find P (X > 40 | X > 10) since we are told a positive payment is
made by the insurer (implying X > 10!).

P (X > 40 | X > 10) = P (X − 10 > 30 | X > 10)

= P (X > 30) by the memoryless property

= e−30/θ = e−3/5 ≈ 54.88%

Alternatively, one could compute P (X>40)
P (X>10) and get the same result.

73



Ryan Gomberg Probability Notes Page 74 of 138

Example 6.10. Losses are exponential with mean 50, and are insured with a deductible
of 10. Find the median loss amount given that a positive payment is made.

We are tasked to compute the loss L that will make the probability

P (X > L | X > 10) = P (X − 10 > L− 10 | X > 10) =
1

2

=⇒ P (X > L− 10) =
1

2

e−(L−10)/50 =
1

2
⇐⇒ −L− 10

50
= − ln 2 ⇐⇒ L = 10 + 50 ln 2 ≈ 44.66

Example 6.11. Losses have density f(x) = 0.1e−0.1x for x > 0, and 0 otherwise. If losses
are insured with a deductible of 3, find the expected payment for a randomly selected loss.

Let X denote our loss, and Y the payment. f(x) is delivered in the form λe−λx, so
E[X] = θ = 1

λ = 10. Use the law of total probability to find E[Y ]:

E[Y ] = E[Y | X ≤ 3]P (X ≤ 3) + E[Y | X > 3]P (X > 3) = 0 + E[Y | X > 3]P (X > 3)

Use Definition 6.7 to compute P (X > 3):

P (X > 3) = 1− F (3) = e−0.3

Recall that Y = X − 3 when X > 3 because of the deductible. The mean of
E[X − 3 | X > 3] follows immediately from the memoryless property:

E[Y ] = E[X − 3 | X > 3]e−0.3 = 10e−0.3 ≈ 7.41

Example 6.12 (SOA Practice Exam Q28). The number of days that elapse between
the beginning of a calendar year and the moment a high-risk driver is involved in an
accident is exponentially distributed. An insurance company expects that 30% of high-risk
drivers will be involved in an accident during the first 50 days of a calendar year. Calculate
the portion of high-risk drivers are expected to be involved in an accident during the first
80 days of a calender year.

The problem tells us that P (0 < X ≤ 50) = 0.3 given X ∼ Exp(λ) and X is the number
of days between January 1 and a high-risk driver’s first accident. We will use the first
known probability to solve for θ:

P (0 < X ≤ 50) = 1− e−50λ = 0.3 ⇐⇒ ln(0.7) = −50λ

λ = − 1

50
ln(.7) ≈ 0.0071

74



Ryan Gomberg Probability Notes Page 75 of 138

Now, compute P (0 < X ≤ 80):

P (0 < X ≤ 80) = 1− e−80λ = 1− e−80(0.00713) ≈ 0.435

Example 6.13 (SOA Practice Exam Q115). An auto insurance policy has a de-
ductible of 1 and a maximum claim payment of 5. Auto loss amounts follow an exponential
distribution with mean 2. Calculate the expected claim payment made for an auto loss.

Let Y be the claim payment made by the insurer and X ∼ Exp(2). Then,

Y =


0 X ≤ 1

X − 1 1 < X ≤ 6

5 X > 6

E[Y ] =

∫ ∞

0
P (Y > y) =

∫ ∞

0
yf(x)

Where f(x) = 1
2e

−x/2

E[Y ] =

∫ 6

1

1

2
(x− 1)e−x/2dx+

∫ ∞

6

5

2
e−x/2dx

The first integral requires integration by parts. Let u = x− 1, then du = dx. Let
dv = e−x/2dx, then v = −2e−x/2:∫ 6

1

1

2
(x− 1)e−x/2dx =

1

2

([
−2(x− 1)e−x/2

]6
1
+

∫ 6

1
2e−x/2dx

)

=
1

2

(
−10e−3 −

[
4e−x/2

]6
1

)
= −7e−3 + 2e−1/2

Onto the second integral:∫ ∞

6

5

2
e−x/2dx =

5

2

[
−5e−x/2

]∞
6

= 5e−3

Therefore,

E[Y ] = 2e−1/2 − 2e−3 ≈ 1.113

The integral could have also been done using tabular integration.
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Example 6.14 (SOA Practice Exam Q35). The lifetime of a printer costing 200 is
exponentially distributed with mean 2 years. The manufacturer agrees to pay a full refund
to a buyer if the printer fails during the first year following its purchase, a one-half refund
if it fails during the second year, and no refund for failure after the second year. Calculate
the expected total amount of refunds from the sale of 100 printers.

Let Y be the payment of the manufacturer and X ∼ Exp(2). Then,
200 0 < X ≤ 1

100 1 < X ≤ 2

0 X > 2

We can compute using integration. Using the given distribution information,

f(x) =
1

2
e−x/2.

E[Y ] =

∫ ∞

0
yf(x) =

∫ 1

0
200

(
1

2
e−x/2

)
dx+

∫ 2

1
100

(
1

2
e−x/2

)
dx

=
[
−200e−x/2

]1
0
−
[
100e−x/2

]2
1
= −200e−1/2 + 200− 100e−1 + 100e−1/2

= 200− 100e−1 − 100e−0.5 ≈ 102.56

Since we want the expect refund from 100 printers, we multiply this quantity by 100:

E[100Y ] = 100E[Y ] = 10256

Alternatively, you could compute

E[Y ] = E[Y | 0 < X ≤ 1]P (0 < X ≤ 1) + E[Y | 1 < X ≤ 2]P (1 < X ≤ 2)

200F (1) + 100(F (2)− F (1)) where F (x) = 1− e−x/2

. . . and obtain the same answer when multiplied by 100.

6.3 Gamma, Exponential, and Poisson

Recall the general form for the density of an exponential distribution. Suppose that
X ∼ Exp(θ). Then

f(x) =
1

θ
e−x/θ for x > 0

The
1

θ
in front is added so

∫ ∞

0
f(x)dx = 1.
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To “generalize” this, we can add a factor of xα−1 in front of the exponential, so

f(x) = cxα−1e−x/θ

where c is designed to make f(x) a density function. The resulting distribution is called a
Gamma(α, θ) distribution.

When α is an integer, it turns out that a Gamma is the sum of α independent identically
distributed (iid) exponentials.

If α = 1, then Gamma reduces to an exponential.

α = 1 : f(x) =
1

θ
e−x/θ

α = 2 : f(x) =
x

θ2
e−x/θ

As the powers of x increase, we also need to increase the power of θ by 1 and divide by
α− 1 to neutralize and keep the total probability to 1

α = 3 : f(x) =
x2

θ3
e−x/θ

Thus, the general form is

f(x) =
1

(α− 1)!
· x

α−1

θα
e−x/θ

What are the CDFs for the corresponding values of α? At α = 1 we have the exponential
CDF.

α = 1 : F (x) = 1− e−x/θ

α = 2 : F (x) = 1− e−x/θ − x

θ
e−x/θ

α = 3 : F (x) = 1− e−x/θ − x

θ
e−x/θ −

(x
θ

)2
· 1
2
e−x/θ

Then, the probability P (X < x) includes something are familiar with:

P (X ≤ x) = P (X < x) = F (x) = 1−
α−1∑
i=0

P
(
Poisson

(x
θ

)
= i
)

P (X ≥ x) = P (X > x) =

α−1∑
i=0

P
(
Poisson

(x
θ

)
= i
)

77



Ryan Gomberg Probability Notes Page 78 of 138

Theorem 6.15 (Mean and Variance of Gamma Distributions). Let X ∼ Exp(θ)
and Y ∼ Gamma(α, θ). If α is an integer, then Y is a sum of α iid Exp(θ) variables.

E[Y ] = αE[X] = αθ Var(Y ) = αVar(X) = αθ2

Therefore, if α is an integer, these formulas are basic properties of sums! This even holds
if α is not an integer!

Example 6.16. If X is Gamma distributed with mean 10 and variance 50, find P (X >
10).

Use the fact Var(X) = θE[X] =⇒ 50 = 10θ =⇒ θ = 5. Then, we quickly find α = 2.
Therefore, we sum up F (x) at α = 1 and α = 2, plugging in x = 10, θ = 5:

P (X > 10) = e−10/θ +
10

θ
e−10/θ = e−2 + 2e−2 = 3e−2 ≈ 0.406

Example 6.17. A company has two electrical generators. The time until failure for each
generator follows an exponential distribution with mean 10. The company will begin using
the second generator immediately after the first one fails. What is the probability that the
total time that the generators produce electricity is less than 30 hours?

Let X1 and X2 be generators such that

X1, X2 ∼ Exp(10)

Define Y = X1 +X2 ∼ Gamma(α = 2, θ = 10). We want P (Y ≤ 30):

P (Y ≤ 30) = P

(
Poisson

(
30

10

)
≥ 2

)
= Fα=2(30)

= 1− e−3 − 3e−3 = 1− 4e−3 ≈ 0.8009

Example 6.18. An insured has 3 losses. If loss amounts are independent and exponen-
tially distributed with mean 5, find the probability that the sum of the 3 losses is no more
than 11.2.

The sum of independent exponentials is a Gamma:

� α = 3 = number of variables in sum

� θ = 5 = mean of each exponential

� Total is Gamma(α = 3, θ = 5)
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Fα=3(11.2) = 1− e−11.2/5 − 11.2

5
e−11.2/5 − 1

2

(
11.2

5

)2

e−11.2/5 ≈ 0.388

X is a gamma (α, θ) random variable if for x > 0 the density is

1

(α− 1)!
· x

α−1

θa
e−x/θ for α an integer

We introduce a new notation,

1

Γ(α)
· x

α−1

θa
e−x/θ for general α

where Γ(α) is the number such that
∫∞
0 f(x)dx = 1.

Some neat facts about Γ(α) :

1. Γ(α) = (α− 1)Γ(α− 1) if α− 1 > 0

2. Γ(α) = (α− 1)! for a positive integer

3. Γ
(
1
2

)
=

√
π, Γ

(
3
2

)
=
(
3
2 − 1

2

)
· Γ
(
1
2

)
=

√
π
2

6.4 Beta and Pareto Distributions

Historically, there have been ambiguities on Beta and Pareto Distributions−their
definitions aren’t consistent between readings. However, we will stick to the following
definitions for future use:

Definition 6.19 (Beta Distributions). X is Beta(a, b) if f(x) = cxa−1(1 − x)b−1 for
0 < x < 1, and 0 otherwise,

where c =
(a+ b− 1)!

(a− 1)!(b− 1)!

Moreover,

E[X] =
a

a+ b
E[X2] =

a(a+ 1)

(a+ b)(a+ b+ 1)

Example 6.20. Find E[X] given f(x) = 6x(1− x) for 0 < x < 1 and 0 otherwise.

E[X] =

∫ 1

0
xf(x)dx =

∫ 1

0
6x2(1− x)dx =

∫ 1

0
(6x2 − 6x3)dx

79



Ryan Gomberg Probability Notes Page 80 of 138

=

[
2x3 − 3

2

]1
0

=
1

2

Or, we can notice from Definition 6.19 that a = 2 and b = 2, so E[X] = 2
2+2 = 1

2 .

Now, let’s move on to Pareto Distributions. Suppose X ≥ 0 but is unbounded. We want∫ 1

0
f(x)dx = 1, which requires lim

x→∞
f(x) = 0.

An exponential distribution does this with f(x) = λe−λx. But x−p also goes to 0. Can it
be a basis for a density?

The problem lies in the fact that x−p is asymptotic at 0 and we want to avoid division by
0 at 0. Here lies two solutions:

� Have f(x) ∝ (x+ θ)−p for x > 0, and 0 otherwise

� Have f(x) ∝ x−p, but requires x > θ > 0

Though there are other names used for both solutions, we will say the first and second
are Pareto and Single parameter Pareto, respectively.

Definition 6.21 (Pareto Distributions). For α > 0, θ > 0, X is Pareto(α, θ) if f(x) =
0 for x < 0 and for x > 0,

f(x) =
αθα

(x+ θ)α+1

If α > 1 then

E[X] =

∫ ∞

0
(1− F (x))dx =

∫ ∞

0

θα

(x+ θ)α
dx =

θ

α− 1

A single parameter Pareto avoids division by 0 by starting at θ > 0.

Definition 6.22 (Single Parameter Pareto Distributions). X is a single parameter
Pareto (α, θ) if for x > θ,

f(x) =
αθα

xα+1

and f(x) = 0 for x < θ. Moreover,

E[X] =

∫ ∞

0
x
αθα

xα+1
dx =

αθ

α− 1

Example 6.23. If f(x) = 12x2(1− x) for 0 < x < 1 and 0 otherwise, find Var(X)

E[X] =

∫ 1

0
x · 12x2(1− x)dx =

∫ 1

0
(12x3 − 12x4)dx =

3

5
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E[X2] =

∫ 1

0
x2 · 12x2(1− x)dx =

∫ 1

0

2

5

Var(X) = E[X2]− (E[X])2 =
2

5
−
(
3

5

)2

=
1

25

Alternatively, we use the fact that X ∼ Beta(3, 2) and conclude that E[X] = 3
5 and

E[X2] = 2
5 , thereby yielding the same variance.

Example 6.24. Y has density f(y) = 2(100)2

(y+100)3
for 0 < y < ∞ and f(y) = 0 otherwise.

Find the 75th percentile of Y .

Let t be the 75th percentile. So F (t) = 0.75 and 1− F (t) = 0.25

1− F (t) =

∫ ∞

t
f(y)dy ⇐⇒ 0.25 =

∫ ∞

t

2(100)2

(y + 100)3
dy

0.25 =

[
(−100)2

(y + 100)2

]∞
t

=
(100)2

(t+ 100)2

0.5 =
100

t+ 100
⇐⇒ t = 100
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7 Normal Approximations

We proceed to the last main family of continuous distributions: the normal distribution!

7.1 Normal Distributions

Definition 7.1 (Normal Distributions).

A standard normal distribution has the density

f(x) =
1√
2π

e−x2/2

The
1√
2π

term makes

∫ ∞

−∞
f(x)dx = 1 and the e−x/2 term in particular makes

SD(X) = 1.

A standard normal Z has mean µ = 0 and variance σ = 1.

What if we want Y to be normal with mean µ and variance σ? We can construct such a
Y by rescaling Z:

Z ∼ N (0, 1) Y = σZ + µ

E[Y ] = σE[Z] + µ = (1 · 0) + µ = µ

Var(Y ) = Var(Y ) = Var(σZ) = σ2Var(Z) = σ2

It turns out that Y is still normal, so

Y = σZ + µ ∼ N (µ, σ2)

Theorem 7.2 (Densities of Normal Variables). If Y ∼ N (µ, σ2), then

f(y) =
1

σ
√
2π

e−(y−µ)2/2σ2

Proof. Let fZ(z) =
1√
2π

e−z2/2 be the standard normal. Fix Y = σZ + µ. Then, we say

Y = g(z) is a function of Z. Then, equivalently,

z = g−1(y) =
y − µ

σ
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is the inverse of g. So, if Y = g(Z),

fY (y) = fZ(g
−1(y))

∣∣∣∣ ddyg−1(y)

∣∣∣∣
fY (y) =

1√
2π

[
exp

(
−1

2

(
y − µ

σ

)2
)]

· 1
σ
=

1

σ
√
2π

e−(y−µ)2/2σ2

Definition 7.3 (Normal CDFs). Suppose that Z is a standard normal (Z ∼ N (0, 1)).
Then

Φ(z) = P (Z ≤ z)

denotes the CDF of Z (the shaded area shown below)

We will be using tables to access values of Φ(z). However, the range of values for Φ(z)
only include z ≥ 0. To find the CDF for negative values, we compare Φ(−z) with Φ(z).

P (Z > z) = P (Z ≤ −z)

Entries represent the area under the standardized normal distribution from −∞ to z, i.e.
Φ(z) = P (Z ≤ z) is the CDF. The value of z to the first decimal is given in the left
column. The second decimal place is given in the top row. The table shown below is
what the top few entries look like:

z 0.00 0.01 0.02 0.03 0.04

0.0 0.5 0.5040 0.5080 0.5120 0.5160

0.1 0.5398 0.5438 0.5478 0.5517 0.5557

0.2 0.5793 0.5832 0.5871 0.5910 0.5948

0.3 0.6179 0.6217 0.6255 0.6293 0.6331

For example, Φ(0.12) = 0.5478, and Φ(−0.33) = 1− Φ(0.33) = 1− 0.6293 = 0.3707
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Example 7.4. X is normal with mean µ = 2 and variance σ2 = 9. Find P (X >
3.86), P (X > 1.49) and the 95th percentile of X.

Recall that X = σZ + µ for a standard normal, so using Z =
X − µ

σ
will standardize X.

Convert these values to Z and use the tables!

P (X > 3.86) = P

(
Z >

3.86− 2√
9

)
= P (Z > 0.62) = 1− Φ(0.62) ≈ 0.2676

P (X > 1.49) = P

(
Z >

1.49− 2√
9

)
= P (Z > −0.17) = Φ(0.17) ≈ 0.5675

To compute the 95th percentile, use the corresponding Z value and solve for X. We have
that

Φ(1.6449) = 0.95 ⇐⇒ 1.6449 = Φ−1(0.95)

X − 2

3
= 1.6449 ⇐⇒ X ≈ 6.935

Theorem 7.5 (Sums of Normal Distributions). f X and Y are independent normal
distributions, then X + Y is also a normal distribution.

E[X + Y ] = E[X] + E[Y ] Var(X + Y ) = Var(X) +Var(Y )

X + Y ∼ N (µX + µY , σ
2
X + σ2

Y )

Using general properties of mean and variance, we can take averages:

X + Y

2
∼ N

(
E[X] + E[Y ]

2
,
1

4
(Var(X) + Var(Y ))

)
Or, more generally, for any c, we have

cX ∼ N (cE[X], c2Var(X))

Example 7.6. X is normal with mean −2.47 and variance 1.69. Find P (X > 0).

P (X > 0) = P

(
Z >

2.47√
1.69

)
= 1− Φ(1.9) ≈ 0.0287

As a sanity check, we know X is much larger than its mean, so we expect a small
probability as the answer.
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Example 7.7. If X and Y are independent normal random variables with E[X] =
0.6, E[Y ] = 3.2, Var(X) = 1.08 and Var(Y ) = 1.17, find the 75th percentile of the average
of X and Y .

Let W = X+Y
2 , then µW = 0.6+3.2

2 = 1.9 and Var(W ) = 1
4(1.08 + 1.17) = 0.5625.

We have that Φ−1(0.75) = 0.6745, so

0.6745 =
W − 1.9√
0.5625

⇐⇒ W =
X + Y

2
≈ 2.406

Example 7.8 (SOA Practice Exam Q110). A wheel is spun with the numbers 1, 2,
and 3 appearing with equal probability of 1

3 each. If the number 1 appears, the player gets
a score of 2, the player gets a score of 2. If the number 3 appears, the player gets a score
of X, where X is a normal random variable with mean 3 and standard deviation 1. If W
represents the player’s score on 1 spin of the wheel, what is P (W ≤ 1.5)?

We already know that rolling a 1 yields a score of less than 1.5, so the probability must
be at least 1

3 . Rolling a 2 yields a score higher than 1.5, so the probability must be less
than 2

3 . When we roll a 3, we have to standardize the normal distribution:

P (X ≤ 1.5) = P

(
Z ≤ 1.5− 3

1

)
= P (Z ≤ −1.5) = 1− Φ(1.5) = 0.0668

We must multiply this by the original probability of 1
3 . So, the total probability is

P (W ≤ 1.5) =
1

3
(1 + 0.0668) ≈ 0.3556

Example 7.9. Suppose Z is a standard normal random variable. What is P (Z2 > 2Z−2)?

This is equivalent to solving P (Z2 − 2Z + 2 > 0). The quadratic formula gives Z < −0.73
and Z > 2.73.

P (Z2 > 2Z + 2) = P (Z < −0.73) + P (Z > 2.73)

= (1− Φ(0.73)) + (1− Φ(2.73)) = 2− 0.7673− 0.9968 ≈ 0.2359

7.2 Linear Interpolation

Some questions might ask for probabilities rounded to multiple decimal places. This may
not be immediately obtainable from a z-score table.
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Example 7.10. Let X ∼ N (µ = 4, σ2 = 2.2). Find P (X > 3.3) to the nearest
thousandth.

P (X > 3.3) = P

(
Z >

3.3− 4√
2.2

)
= P (Z > −0.472) = Φ(0.472)

According to the table, Φ(0.47) = 0.6808 and Φ(0.48) = 0.6844. What is Φ(0.472)?

To the nearest hundredth, it is 0.68. To the nearest thousandth, it is between 0.681 and
0.684 but we cannot immediately tell. So,

0.6806 = Φ(0.47) < Φ(0.472) < Φ(0.48) = 0.6844.

The true value is Φ(0.472) = 0.6815 ≈ 0.682.

On an exam, between the range of possible values we just described, the answer will be
the true value. While this is generally a non-issue, there are two options:

1. Guesstimate. 0.472 is closer to 0.47 than 0.48. Φ(0.472 will be in the middle, but
closer to Φ(0.47), so probably 0682.

2. Use linear interpolation to get a better approximation.

Φ(t)− 0.6808

t− 0.47
≈ 0.6844− 0.6806

0.48− 0.47

Φ(0.472) ≈ 0.472− 0.47

0.48− 0.47
(0.6844−0.6808)+0.6808

Φ(0.472) ≈ 0.2(0.6844−0.6808)+0.6808

= 0.6815
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From the tables, we have Φ(a) and Φ(a+
0.01). We want Φ(a+ t).

Φ(a+ t)− Φ(a)

(t+ a)− a

=
Φ(a+ 0.01)− Φ(a)

0.01

Φ(a+t) = Φ(a)+
t

0.01
[Φ(a+ 0.01)− Φ(a)]

Example 7.11. Suppose X ∼ N (µ = 4, σ2 = 2.2). Find the 13th percentile of X.

For a standard normal, the 13th percentile z is:

z = Φ−1(0.13) = −Φ−1(1− 0.13) = −Φ−1(0.87)

From the table, Φ(1.12) = 0.8686,Φ(1.13) = 0.8708, so −1.13 < z < −1.12.

Let t denote the 13th percentile of X:

X = σZ + µ =
√
2.2Z + 4 ⇐⇒ t =

√
2.2z + 4

−1.13
√
2.2 + 4 < t < −1.12

√
2.2 + 4

2.324 < t < 2.339

Φ(1.13) = 0.8708 is closer to 0.87 than Φ(1.12) = 0.8686, so exact value is closer to 2.324,
which corresponds to z = 1.13, than 2.339. So, we want t = 4−

√
2.2ϕ−1(0.87)

y − 0.8686

Φ−1(y)− 1.12
≈ 0.8708− 0.8686

1.13− 1.12

0.87− 0.8686

Φ−1(0.87)− 1.12
≈ 0.8707− 0.8686

1.13− 1.12

0.87− 0.8686

0.8708− 0.8686
=

Φ−1(0.87)− 1.12

1.13− 1.12

14

22
=

Φ−1(0.87)− 1.12

0.01

Φ−1(0.87) = 1.12 +
14

22
(0.01) = 1.1264

t = 4−
√
2.2(1.1264) = 2.329
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Example 7.12. If X is normal with mean 0.6 and variance 1.3, find P (X ≤ 0.8)

P (X ≤ 0.8) = P (Z ≤ 0.1754)

P (Z ≤ 0.17) ≈ 0.5675 P (Z ≤ 0.18) ≈ 0.5714

P (Z ≤ 0.1754) = 0.5675 +
0.0054

0.01
(0.5714− 0.5675) = 0.5696

Example 7.13. Find the 60th percentile of X if E[X] = 81.2 and Var(X) = 33.8.

Let z denote the 60th percentile of a standard normal, and t the 60th percentile of X.
We have

Φ−1(0.5987) < Φ−1(0.6) < Φ−1(0.6026) ⇔ 0.25 < Φ−1(0.6) < 0.26

Use linear interpolation to approximate Φ−1(0.6):

Φ−1(0.6) = 0.25 +
0.6− 0.5987

0.6026− 0.5987
(0.26− 0.25) ≈ 0.2533

x = σz + µ =
√
33.8z + 81.2 ≈ 82.67

7.3 The Central Limit Theorem

The main idea of the Central Limit Theorem ties in other random variables with normal
distributions!

Theorem 7.14 (Central Limit Theorem (CLT)). If X1, . . . , Xn are identically in-
dependently distributed random variables, then

(X1 + · · ·+Xn)− nE[X1]√
nVar(X1)

∼ N (0, 1)

Alternatively, let Sn = X1 + · · ·+Xn. Then

E[Sn] = nE[X1] = nµ SD(Sn) = σ
√
n

Sn − nµ√
nσ

=⇒ N (0, 1)

The theorem states that the sum of a large number of random variables
converges to a normal approximation!

This lets us approximate the distribution of sums of random variables.
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Let Sn = X1 + · · ·+Xn. Finding the exact distribution of Sn is hard, but

P (Sn ≤ x) = P

(
Sn − nµ

σ
√
n

≤ x− nµ

σ
√
n

)
The first term is the normalized standard deviation, and the second term is the z-value.
In summary, this is the approximation of

P (Sn ≤ x) ≈ Φ

(
x− nµ

σ
√
n

)
and we can find these values using the z-score table!

Example 7.15. An insurance company pays claims on 625 losses. Losses are independent
and exponentially distributed with mean 3. Find the approximate probability that the total
payment is between 1800 and 2010.

The words “approximate probability” and the large number of random variables generally
implies that the probability should be computed using a normal distribution.

We are given Sn = X1 + · · ·+X625 where each Xi ∼ Exp(3). The mean, variance, and
standard deviation follow:

E[Sn] = 625 · 3 = 1875 Var(Sn) = 625 · 9 = 5625 SD(Sn) =
√
Var(Sn) = 75

P (1800 < Sn < 2010) = P

(
1800− 1875

75
<

Sn − E(Sn)

SD(Sn)
<

2010− 1875

75

)
= P (−1 < Z < 1.8) = Φ(1.8)− Φ(−1) = Φ(1.8)− (1− Φ(1))

= 0.9641 + 0.8413− 1 ≈ 0.8054

The previous example imposed the constraint that each loss was independent−we were
summing them up. This is different than multiplying one loss by the number of losses.
Here we distinguish the sum of losses versus a single product.

Suppose X1, X2, . . . , X100 are iid random variables with P (Xi = 1) = P (Xi = −1) = 1
2 .

Think of Xi as the amount that we win in bet number i.

100X1 is the payoff if we bet $100 on the first bet. It is either −100 or 100.

100∑
i=1

Xi is the net payoff after all 100 bets. We will win some and lose some, so
100∑
i=1

Xi will

probably be close to 0. In particular, it is closer to 0 than 100Xi and therefore has
smaller variance.

Var(100X1) = 1002Var(X1) = 1002
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Var
(∑

Xi

)
= 100Var(X) = 100

The sum will be approximately normal, but the product will be way off! This is a key
distinction and is why we do NOT take products for approximations.

Instead, suppose that X1, . . . , Xn are iid random variables, and let X be their average.
What is the distribution of X?

S = X1 +X2 + · · ·+Xn =⇒ X =
S

n
=

1

n
(X1 +X2 + · · ·+Xn)

=⇒ E[X] =
1

n
(E[X1] + E[X2] + · · ·+ E[Xn])

As for the variance...

Var(X) = Var

(
1

n
(X1 + · · ·+Xn)

)
=

1

n2
(Var(X1) + · · ·+Var(Xn))

=
1

n2
· nVar(X) =

Var(X)

n

Since S is roughly normal, so is S
n , and so we have that

X ∼ N
(
E[X],

Var(X)

n

)
Example 7.16. Losses have mean 4 and standard deviation 3. If losses are independent,
use a normal approximation to estimate the probability that the sum of 30 losses is at least
100.

Let Xi denote the loss amount, S the sum, and Z the standard normal. X has
µ = 4, σ = 3. Then, it follows that

E[S] = 30E[X] = 120, Var(S) = 30(32) = 270, SD(S) =
√

Var(S) ≈ 16.43

P (S ≥ 100) = P

(
Z ≥ 100− 120

16.43

)
= P (Z ≥ −1.22)

P (S ≥ 100) = Φ(1.22) ≈ 0.888

We could obtain a more precise answer using linear interpolation:

Φ(1.217) ≈ Φ(1.21) + 0.7(Φ(1.22)− Φ(1.21)) ≈ 0.8882
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Example 7.17. Losses are independent, each with density 0.2e−0.2x for x > 0 and 0
otherwise. Losses are insured with a deductible of 5. The first 60 randomly selected positive
payments are averaged. Using a normal approximation, estimate the 88th percentile of the
average.

The density function tells us that X ∼ Exp(5). Since we are only counting positive
payments, by the memoryless property, if X exceeds the deductible, the payments Yi have
the same distribution as the losses, so they are also exponential with mean 5.

E[Y ] = E[Y ] = 5, Var(Y ) =
Var(Y )

60
=

52

60
= 0.4167, SD[Y ] =

√
0.4167 = 0.6455

To find Z that corresponds to the 88th percentile, we can once estimate it using linear
interpolation. Since Φ(1.17) = 0.8790 and Φ(1.18) = 0.8810, 0.88 is the midpoint between
the two, making Z = 1.175 the best approximation.

1.175 =
Y − 5

0.6455
⇐⇒ Y ≈ 5.76

Therefore, the 88th percentile of the average is 5.76.

Remember that given that a loss already exceeds the deductible, the remaining amount
beyond said deductible behaves like a brand new exponential random variable with the
same mean. The memoryless property applies conditionally on the loss exceeding the
deductible.

Example 7.18 (SOA Practice Exam Q66). Claims filed under auto insurance policies
follow a normal distribution with mean 19,400 and standard deviation 5,000. What is the
probability that the average of 25 randomly selected claims exceeds 20,000?

Use the formula that was previously derived for averages. Need to compute the variance
because the standard deviation is given.

X ∼ N
(
19400,

(5000)2

25

)
= N (19400, 1000000)

We want to compute the probability P (X ≥ 20000):

P (X ≥ 20000) = P

(
Z ≥ 20000− 19400√

1000000

)
= P (Z ≥ 0.6)

P (X ≥ 20000) = 1− Φ(0.6) = 1− 0.7257 = 0.2743
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Example 7.19 (SOA Practice Exam Q65). A charity receives 2025 contributions.
Contributions are assumed to be independent and identically distributed with mean 3125
an standard deviation 250. Calculate the approximate 90th percentile for the distribution
of the total contributions received.

Let S = X1 + · · ·+X2025 where each Xi has E[X] = 3125 and Var(X) = 2502 = 62500.
So,

E[S] = 2025(3125) = 6,328,125 Var(S) = 2025(62500)

We have that P (Z < 0.9) ≈ 1.2816 using the values on the bottom. We now have all of
the information required to solve for S90:

1.2816 =
S90 − 6,328,125√

2025(62500)
=

S90 − 6,328,125

11,250

S90 = 6,328,125 + 11,250(1.2816) = 6,342,543

7.4 Continuity Correction

In almost all cases, we will run into weird interactions with approximating discrete
probabilities using continuous normal distributions.

Example 7.20. Suppose X is binomial with n = 25 and p = 0.2. Find (a) E[X] and
Var(X), (b) An expression for the probability that X is at least 8, and (c) An expression
for the probability that X is more than 8.

(a) E[X] = np = 5,Var(X) = np(1− p) = 25 · 0.2 · 0.8 = 4

(b)

P (X ≥ 8) =

25∑
k=8

P (X = k) =

25∑
k=8

(
25
k

)
0.2k(0.8)25−k ≈ 0.109 using a computer

(c)

P (X > 8) =

25∑
k=9

P (X = k) =

25∑
k=9

(
25
k

)
0.2k(0.8)25−k ≈ 0.047 using a computer

Now, suppose W is normal with the same mean and variance (µ = 5, σ2 = 4). Find the
same probabilities.

The problem lies in the fact that the probability at a single point of a continuous
distribution is 0, so it would follow that P (W > 8) = P (W ≥ 8) for a normal distribution.

P (W ) = P

(
W − E[W ]

SD(W )
>

8− 5√
4

)
= 1− Φ(1.5) = 0.0668
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In those instances, X and W had the same µ and σ2, but

� P (X ≥ 8) = 0.1091 and P (X > 8) = 0.0468

� P (W ≥ 8) = 0.0668 and P (W > 8) = 0.0668

While we would expect them to be closer by the Central Limit Theorem, the issue is X
must be an integer, while W does not. With this in mind, how could we get a better
approximation for P (X ≥ 8)?

The idea is to let W round to something that is ≥ 8. For instance,
P (X ≥ 8) ≈ P (W > 7.5), or P (X > 8) = P (W > 8.5)

P (W > 7.5) = 1− Φ

(
7.5− 5

2

)
= 0.1056

P (W > 8.5) = 1− Φ

(
8.5− 5

2

)
= 0.0401

There is definitely room for improvement (one way this could be more precise is by
increasing n), but our approximation is much better than what is was before.

Definition 7.21 (Continuity Correction of Normal Approximations).

A continuity correction is used with normal approximations of integer valued
variables. It corrects for the normal being continuous while the variable we care about is
not. It is used when approximating a sum of Sn of discrete variables with a normal W .

P (Sn ∈ A) ≈ P (W rounds to something ∈ A)

There are four possible instances of rounding we can do (for the probabilities <,≤, >,≥).
Rather than listing them out, it is a lot more intuitive to think them through.

Example 7.22. A roulette player betting on black has an 18
38 probability of winning on

each spin of the wheel. Using a normal approximation with a continuity correction, find
the approximate probability of betting on black and winning at least 45 out of 100 spins.

This question implies we are dealing with a binomial distribution, with the “success”

being when the ball lands on a black section. Therefore, Sn ∼ Bin

(
100,

18

38

)
E[Sn] = np = 47.37 Var(Sn) = np(1− p) = 24.93

We want to approximate at least 45 wins, but with continuity correction, we should
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calculate the probability P (W > 44.5):

P (W > 44.5) = P

(
Z >

44.5− 47.37

24.93

)
≈ P (Z > −0.575)

= Φ(0.575) ≈ 1

2
(Φ(0.57) + Φ(0.58)) ≈ 0.7174

Example 7.23. Using a normal approximation with a continuity correction, estimate
P (X ≤ 4) if X is Poisson with mean 2.3.

Let W be normal with the same mean and variance as X.

E[X] = 2.3 SD(X) =
√
Var(X) =

√
2.3

P (X ≤ 4) ≈ P (W < 4.5) = Φ

(
4.5− 2.3√

2.3

)
= Φ(1.45) = 0.9265

Now, estimate P (X = 4) using a normal approximation with a continuity correction.
How does that compare to the true value?

P (X = 4) ≈ P (3.5 < W < 4.5) = P (W ≤ 4.5)− P (W ≤ 3.5)

= Φ(1.45)− Φ

(
3.5− 2.3√

2.3

)
= Φ(1.45)− Φ(0.79)

P (X = 4) ≈ 0.9265− 0.7852− 0.1413

The true value with a Poisson distribution yields:

P (X = 4) = e−2.3 · 2.3
4

4!
= 0.117

Generally, normal approximations for Poisson distributions improve as the mean
increases.

Example 7.24. Using a normal approximation with a continuity correction, what is the
approximate probability that the sum of the rolls of 15 independent six-sided dice will be
at least 50? Greater than 50?

This can be modeled through a multinomial distribution, where n = 15 and each pi =
1
6 .

We expect each number to get rolled 2.5 times, so

E[S] = 2.5 + 5 + 7.5 + 10 + 12.5 + 15 = 52.5, Var(S) =
5

6
(52.5) = 43.75
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We want the probability of the sum being at least 50, so we will compute P (W > 49.5):

P (W > 49.5) = P

(
Z >

49.5− 52.5√
43.75

)
≈ P (Z > −0.454)

= Φ(0.454) = 0.6Φ(0.45) + 0.4Φ(0.46) = 0.6(0.6736) + 0.4(0.6772)

P (S ≥ 45) ≈ 0.675

The best continuity correction for P (S > 50) is by computing P (W > 50.5):

P (W > 50.5) = P

(
Z >

50.5− 52.5√
43.75

)
≈ P (Z > −0.302)

= Φ(0.302) = 0.8Φ(0.30) + 0.2Φ(0.31) = 0.8(0.6179) + 0.2(0.6217)

P (S > 50) ≈ 0.619

7.5 Lognormal Random Variables

To better understand how lognormal distributions work, we motivate this concept with
an example:

Example 7.25. Losses in a year have a lognormal distribution, Y = eX , where X is a
normal random variable with mean 3 and variance 0.5. What is the probability that losses
exceed 80?

P (Y > 80) = P
(
eX > 80

)
= P (X > ln 80)

= P

(
X − E[X]

SD(X)
>

4.38− 3√
0.5

)
= 1− Φ

(
4.38− 3

0.25

)
= 1− Φ(1.95) = 0.03

Definition 7.26 (Lognormal Random Variables). Y is a lognormal if Y = eX , X
is normal. In words, the log of a lognormal distribution is normal.

Recall that for a normal random variable X, −∞ < X < ∞. Although eX is defined,
ln(X) is not.

Theorem 7.27 (Lognormal Moments). Suppose X ∼ N (µ, σ2) and Y = eX is the
corresponding lognormal. Then

E[Y ] = eµ+σ2/2 E[Y 2] = e2µ+2σ2
E[Y n] = enµ+(nσ)2/2
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We leave the proof aside due to its complexity. However, it is important to know that for
finding moments, we use these formulas about the lognormal. For finding probabilities, we
take logs and work with the underlying normal.

Example 7.28. Losses Y have a lognormal distribution with mean 50 and variance 400.
What is the probability that losses exceed 75?

Use the formulas in Theorem 7.27 to find µ and σ:

E[Y ] = 50 = eµ+σ2/2 ⇐⇒ ln(50) = µ+
1

2
σ2

E[Y 2] = (E[Y ])2 +Var(Y ) = 502 + 400 = e2µ+2σ2 ⇐⇒ ln(502 + 400) = 2µ+ 2σ2

This is a system of equations we can solve for. Double the first equation and subtract it
from the second:

ln(502 + 400)− 2 ln(50) = σ2 ⇐⇒ σ2 ≈ 0.148

Now, plug σ2 back into either equation to solve for µ. We will use the first equation.

µ = ln(50)− 1

2
(0.148) ≈ 3.84

We want to compute P (Y > 75):

P (Y > 75) = P (X > ln(75)) = P

(
Z >

ln(75)− 3.84√
.148

)
= P (Z > 1.24)

P (Y > 75) = 1− Φ(1.24) ≈ 0.11

Example 7.29. Suppose X is normal with P (X > 5) = 0.5 and P (X > 8) = 0.05. Find
E[e2X ].

By symmetry of the normal distribution, we know µ = 5. We also know that 8 is the 95th
percentile of X. Use this to find σ:

0.95 = Φ(1.6449) = P (Z < 1.6449) ⇐⇒ 1.6449 =
8− 5

σ

⇐⇒ σ =
3

1.6449
= 1.824 ⇐⇒ σ2 = 3.33

Therefore, Y = eX ∼ ln(µ = 5, σ2 = 3.33).

E[e2X ] = E[Y 2] = e2µ+2σ2
= e10+2(3.33) ≈ 17,192,779
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Example 7.30. X is lognormal with mean 10 and variance 200. Find P (X > 10).

E[X] = 10 = eµ+σ2/2 ⇐⇒ ln(10) = µ+
1

2
σ2

E[X2] = (E[X])2 +Var(X) = 300 = e2µ+2σ2 ⇐⇒ ln(300) = 2µ+ 2σ2

Solving the system of equations yields σ2 = 1.099, µ = 1.753.

P (X > 10) = P (ln(X) > ln(10) = P

(
Z >

ln(10)− 1.753√
1.099

)
= 1− Φ(0.524)

= 1− 0.6Φ(0.52)− 0.4Φ(0.53) = 1− 0.6(0.6985)− 0.4(0.7019)

P (X > 10) ≈ 0.3

Example 7.31. You are given the following: X is a random variable representing size of
loss and Y = ln(X) is a random variable having a normal distribution mean of 6.503 and
standard deviation of 1.5. Determine the probability that X is greater than 1000.

We have that Y = ln(X) ∼ N (µ = 6.503, σ = 1.5).

P (X > 1000) = P (ln(X) > ln(1000)) = P

(
Z >

Y − µY

σY

)

= P

(
Z >

ln(1000)− 6.503

1.5

)
= P (Z > 0.27)

P (X > 1000) = 1− Φ(0.27) ≈ 0.3936

Example 7.32. Losses Y are such that ln(Y ) is normally distributed. The median
loss amount is 206.438, and there is a 6.68% chance that losses will exceed 354.249. Find
Var(ln(Y )).

We work with the underlying normal ln(Y ). The medians correspond, so ln(Y ) has
median ln(206.438) = 5.33. Since ln(Y ) is normal, the median and mean are equal by
symmetry. So, µ = 5.33.

0.0668 = P

(
ln(Y )− µ

σ
>

5.87− 5.33

σ

)

1.5 =
5.87− 5.33

σ
⇐⇒ σ2 =

(
0.54

1.5

)2

= 0.1296

Therefore, Var(ln(Y )) = 0.1296 .
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Because the ideas of a lognormal distribution can feel a bit overwhelming at first, below
is a summary of the key points:

Y is lognormal if ln(Y ) follows a normal distribution. If X is normal, then Y = eX ,

because ln(eX) = X, and we already know X is normal. Moreover, X = lnY , which is
important to know when we compute probabilities.

For problems with a lognormal distribution, denoting X and Y as two different
distributions is important for organizing what we know about both. For instance, µX , σ2

X

are the mean and variance of our normal distribution and µY , σ
2
Y is are the mean and

variance of our lognormal distribution. Y , the lognormal distribution, uses µX and σX to
compute its moments:

µY = E[Y ] = eµX+0.5σ2
X E[Y 2] = e2µX+2σ2

X

If we have µX and σX , we are ready to compute the probability! If we are tasked to find
the probability that X exceeds some value k,

P (X > k) = P (ln(Y ) > ln(k)) = P

(
Z >

ln(k)− µX

σX

)
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8 Multivariate Probability

In this section, we will only be talking amount multivariate probability with discrete
random variables.

8.1 Joint Distributions

In 1-dimension, for a random variable X we had
∑
x

P (X = x) = 1. This will translate

nicely into 2 dimensions!

Definition 8.1 (Joint PMF). Suppose we have 2 random variables, X and Y . The
joint probability mass function is P (X = x, Y = y). The total probability is still 1:∑

x

∑
y

P (X = x, Y = y) = 1

Example 8.2. The joint distribution of X and Y is given by the table below:

We have
P (X = 0, Y = 1) = 0.1

P (X = 2, Y = 2) = 0.2

We also verify the total probability sums to 1:∑
x,y

P (X = x, Y = y) = 0.1+0.2+0.3+0.1+0.1+0.2 = 1

Example 8.3. Suppose X and Y are integer valued random variables with 1 ≤ X ≤ 4
and 1 ≤ Y ≤ X. If every possible outcome is equally likely, find P (X = Y = 3)

The possible outcomes are:
{X = 1, Y = 1}

{X = 2, Y = 1} {X = 2, Y = 2}

{X = 3, Y = 1} {X = 3, Y = 2} {X = 3, Y = 3}

{X = 4, Y = 1} {X = 4, Y = 2} {X = 4, Y = 3} {X = 4, Y = 4}

With 10 outcomes of equal probability, the probability is P (X = Y = 3) = 0.1.

Recall that in 1-dimension, the CDF of X is FX(x) = P (X ≤ x). In 2-dimensions, the
joint CDF of X and Y is

FX,Y (x, y) = P (X ≤ x, Y ≤ y)
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Theorem 8.4 (Properties of Joint CDFs).

1. 0 ≤ F (x, y) ≤ 1

2. F (x,∞) = P (X ≤ x, Y < ∞) = P (X ≤ x) = FX(x)

3. F (∞, y) = P (X < ∞, Y ≤ y) = P (Y ≤ y) = Fy(y)

4. F (∞,∞) = 1

5. F (−∞, y) = 0 = F (x,−∞)

Example 8.5. The joint distribution of X and Y is given by the table below:

Some values of the CDF:

FX,Y (0, 1) = P (X ≤ 0, Y ≤ 1) = 0.1

FX,Y (1, 1) = P (X ≤ 1, Y ≤ 1) = 0.3

FX,Y (1, 2) = P (X ≤ 1, Y ≤ 2) = 0.5

Example 8.6. P (X = x, Y = y) = c(x + y) for x and y integers such that 1 ≤ x ≤ 3
and 1 ≤ y ≤ x. Find c.

The possible combinations are (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3). The total
probability is:

c(2 + 3 + 4 + 4 + 5 + 6) = 1 ⇐⇒ c =
1

24

Example 8.7. X and Y are integer valued random variables. If you know FX,Y (3, 3) = 1,
FX,Y (3, 2) = 0.7, FX,Y (2, 3) = 0.6, FX,Y (2, 2) = 0.4, FX,Y (1, 3) = 0.3, and FX,Y (1, 2) = 0.2,
find P (X = 2).

Since P (3, 3) = ∞, the ranges of X and Y are given by X ≤ 3 and Y ≤ 3. We know that

P (X ≤ 1, Y ≤ 3) = 0.3, P (X ≤ 2, Y ≤ 3) = 0.6

Therefore, P (X = 2) = 0.6− 0.3 = 0.3 .

Example 8.8 (SOA Practice Exam Q113). Two fair dice are rolled. Let X be
the absolute value of the difference between the two numbers on the dice. Calculate the
probability that X < 3.

Intuitively, the difference is less than 3 if the two dice roll the same number, if their
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values are 1 apart, or if their values are 2 apart. There are 6 ways for two dice to roll the
same number. There are 10 ways for two dice to be one apart (i.e. (1, 2) and (2, 1) are
two different outcomes). Lastly, there are 8 ways for two dice to be two apart. There are
36 total possible outcomes. So, if X is the absolute difference between two numbers, then

P (X < 3) =
6 + 10 + 8

36
=

2

3

Example 8.9 (SOA Practice Exam Q238). Skateboarders A and B practice one
difficult stunt until becoming injured while attempting the stunt. On each attempt, the
probability of becoming injured is p, independent of the outcomes of all previous attempts.
Let F (x, y) represent the probability that skateboarders A and B make no more than x
and y attempts, respectively, where x and y are positive integers.

It is given that F (2, 2) = 0.0441. Calculate F (1, 5).

We have that X ≥ 1 and Y ≥ 1. Each probability is independent and is equally likely
(uniform), so

F (2, 2) = FA(2)FB(2) = (F (2))2 ⇐⇒ F (2) =
√
0.0441 = 0.21

Since we are counting the number of attempts they make, and they stop with probability
p, the number of attempts each makes is a geometric starting at 1, and

F (2) = p+ p(1− p) ⇐⇒ 0.21 = −p2 + 2p

Applying the quadratic formula:

p =
2±

√
22 − 4(0.21)

2
= 0.11118

We use p to compute F (1, 5):

F (1, 5) = P (A = 1, B ≤ 5) = P (A = 1)P (B ≤ 5)

Since P (B ≤ 5) is the probability that skateboarder B does not get injured 5 times, the
probability is (1− p)5:

F (1, 5) = p(1− P (B > 5)) = p(1− (1− p)5) ≈ 0.0495
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Definition 8.10 (Marginal Distributions). For discrete variables,

P (X = x) =
∑
y

P (X = x, Y = y)

is the marginal distribution of X. In words, it’s the distribution of X without knowing
Y .

Example 8.11. Let X and Y be discrete random variables with joint probability function

p(x, y) =
2x+ y

12

for (x, y) = (0, 1), (0, 2), (1, 2), (1, 3), and 0 otherwise. Determine the marginal probability
function of X.

X has two possible values: 0 and 1. Compute P (X = 0) and P (X = 1)

P (X = 0) = P ((0, 1)) + P ((0, 2)) =
1

12
+

1

6
=

1

4

P (X = 1) = P ((1, 2)) + P ((1, 3)) =
1

3
+

5

12
=

3

4

P (X = x) = 0 otherwise

Given the same joint probability function, find P (X = 0 | Y = 2).

Sum up the probabilities where Y = 2. Divide P (X = 0 ∩ Y = 2) by the resulting value:

P (X = 0 | Y = 2) =
P (X = 0 ∩ Y = 2)

P (Y = 2)
=

1
6

1
6 + 1

3

=
1

3

Definition 8.12 (Conditional Distributions). For discrete random variables X,Y ,

P (X = x | Y = y) =
P (X = x, Y = y)

P (Y = y)
=

P (X = x, Y = y)∑
x P (X = x, Y = y)

The denominator makes the conditional distribution itself a probability distribution (be-
cause the sum of marginal distributions add up to 1!)

Definition 8.13 (Multivariate Independence). X and Y are independent if
P (X = x | Y = y) = P (X = x). For discrete variables,

P (X = x, Y = y) = P (Y = y) · P (X = x) if X and Y are independent
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In particular, X and Y are independent if and only if the joint probability mass function
factors as a function of x times a function of y and the range of {X,Y } is a discrete
rectangle.

Example 8.14. The joint distribution of X and Y is given by the table below:

Some conditional probabilities:

P (X = 0 | Y = 1) =
0.1

0.6
=

1

6

P (X = 1 | Y = 1) =
0.2

0.6
=

1

3

P (Y = 1 | X = 2) =
0.3

0.5
=

3

5

P (Y = 2 | X = 2) =
0.2

0.5
=

2

5

Some important points:

� The marginal distribution P (X = x) of X can only involve x. It cannot involve any
other variable.

� The conditional distribution P (X = x | Y = y) can involve x and y.

� If X and Y are independent, P (X = x | Y = y) = P (X = x). More precisely, the
conditional distribution of X will only involve x. Even the range cannot depend on
y.

Example 8.15. Let X and Y be discrete random variables with joint probability function

p(x, y) =
x2y

23

for (x, y) = (1, 1), (1, 2), (2, 2), (2, 3), and 0 otherwise. Determine the marginal probability
function of X.

P (X = 1) =
1

23
+

2

23
=

3

23

P (X = 2) =
8

23
+

12

23
=

20

23

P (X = x) = 0 otherwise

Now, compute P (X = 1 | Y = 2):

P (X = 1 | Y = 2) =
P (X = 1 ∩ Y = 2)

P (1, 2) + P (2, 2)
=

2
23

2
23 + 8

23

=
1

5
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Example 8.16. Suppose X and Y are discrete random variables such that

P (X = x, Y = y) =

{
x+y
21 x = 1, 2 or 3, y = 1 or 2

0 otherwise

Find P (X = x | Y = 2).

P (X = x | Y = 2) =
P (X = x ∩ Y = 2)

P (Y = 2)
=

x+ 2

21(P (1, 2) + P (2, 2) + P (3, 2))

=
x+ 2

21
(

3
21 + 4

21 + 5
21

) =
x+ 2

12

Example 8.17 (SOA Practice Exam Q110). The probability of x losses occurring
in year 1 is (0.5)x+1 for x = 0, 1, 2, . . .. The probability of y losses in year 2 given x losses
in year 1 is given by the table:

Calculate the probability of exactly 2 losses in 2 years.

The possible ways to have exactly 2 losses is (2, 0), (0, 2), and (1, 1). Rearrange the
formula for conditional probability to compute each:

P (X = 2 ∩ Y = 0) = P (X = 2)P (Y = 0 | X = 2) = (0.5)3(0.25) = 0.03125

P (X = 0 ∩ Y = 2) = P (X = 0)P (Y = 2 | X = 0) = (0.5)(0.05) = 0.025

P (X = 1 ∩ Y = 1) = P (X = 1)P (Y = 1 | Y = 1) = (0.5)2(0.3) = 0.075

Therefore, the probability of exactly 2 losses in 2 years is

P (2 losses in 2 years) = 0.03125 + 0.025 + 0.075 = 0.13125
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8.2 Joint Moments

Before establishing a concrete definition for the mean, let us get a sense for its
computation with an example:

Example 8.18. Let X denote the number of years I will use my current computer, and
Y the number of years I will use my tablet. The joint distribution of X and Y is

What is the average number of years that I will use my tablet?

One approach is to first find the marginal distribution of Y .

P (Y = 1) = 0.40 P (Y = 2) = 0.35 P (Y = 3) = 0.25

E[Y ] = 1(0.40) + 2(0.35) + 3(0.25) = 1.85

A second approach is to sum over all 9 cases

E[Y ] = 0.05 + 0.16 + 0.19 + 2(0.1) + 2(0.13) + 2(0.12) + 3(0.07) + 3(0.1) + 3(0.08) = 1.85

What is E[X + Y ]?

The second approach can handle the X + Y much more easily than the first:

E[X + Y ] = (1 + 1)(0.05) + (2 + 1)(0.16) + (3 + 1)(0.19) + (1 + 2)(0.1)

+ (2 + 2)(0.13) + (3 + 2)(0.12) + (1 + 3)(0.07) + (2 + 3)(0.1) + (3 + 3)(0.08)

= 4.02

Definition 8.19 (Multivariate Mean). For discrete random variables X and Y ,

E[g(X,Y )] =
∑
x

∑
y

g(x, y) · P (X = x, Y = y)

Some special cases:

E[X] =
∑
x

∑
y

x · P (X = x, Y = y)
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E[Y 2] =
∑
x

∑
y

y2P (X = x, Y = y)

Example 8.20. Let X and Y be discrete random variables with joint probability function

p(x, y) =
2x+ y

12

for (x, y) = (0, 1), (0, 2), (1, 2), (1, 3), and 0 otherwise. Find E[X] and E[(X + 1)Y ]

E[X] = P (1, 2) + P (1, 3) =
1

3
+

5

12
=

3

4

E[(X + 1)Y ] = (0 + 1)(1)P (0, 1) + (0 + 1)(2)P (0, 2) + (1 + 1)(2)P (1, 2) + (1 + 1)(3)P (1, 3)

=
1

12
+

1

3
+

4

3
+

5

2
=

51

12
=

17

4

Example 8.21 (SOA Practice Exam Q76). A car dealership sells 0, 1, or 2 luxury
cars on any day. When selling a car, the dealer also tries to persuade the customer to buy
an extended warranty for the car. Let X denote the number of luxury cars sold in a given
day, and let Y denote the number of extended warranties sold.

P (X = 0, Y = 0) =
1

6
P (X = 1, Y = 0) =

1

12
P (X = 1, Y = 1) =

1

6

P (X = 2, Y = 0) =
1

12
P (X = 2, Y = 1) =

1

3
P (X = 2, Y = 2) =

1

6

What is the variance of X?

E[X] =
1

12
+

1

6
+ 2

(
1

12

)
+ 2

(
1

3

)
+ 2

(
1

6

)
=

17

12
≈ 1.417

E[X2] =
1

12
+

1

6
+ 22

(
1

12

)
+ 22

(
1

3

)
+ 22

(
1

6

)
=

31

12
≈ 2.583

Var(X) = E[X2]− (E[X])2 ≈ 0.575

Example 8.22. Let X and Y be discrete random variables such that

P (X = x, Y = y) =

{
2x+1−y

9 x = 1 or 2, y = 1 or 2

0 otherwise

Calculate E
[
X
Y

]
.

E

[
X

Y

]
= P (1, 1) +

1

2
P (1, 2) + 2P (2, 1) + P (2, 2)
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=
2

9
+

1

2

(
1

9

)
+ 2

(
4

9

)
+

2

9
=

25

18

Now we take a look at metrics that compare the relationship between X and Y :

Definition 8.23 (Covariance). Suppose X,Y are two random variables. Then

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

If k is some constant, then Cov(X, k) = 0.

Covariances are bilinear, i.e.,

Cov(aX + bY, cZ) = Cov(aX, cZ) + Cov(bY, cZ) = acCov(X,Z) + bcCov(Y,Z)

If we take the covariance of a random variable with respect to itself, the result reduces to
the variance:

Cov(X,X) = E[X ·X]− E(X)E(X) = Var(X)

When we compute the variance of sums, the covariance pops out nicely:

Var(X + Y ) = Cov(X + Y,X + Y ) = Cov(X,X) + 2Cov(X,Y ) + Cov(Y, Y )

Var(X + Y ) = Var(X) + 2Cov(X,Y ) + Var(Y )

A useful analog for this formula is the sum of squares formula, where
(a+ b)2 = a2 + 2ab+ b2. It translates nicely to any argument inside the variance.

If a and b are constants, then

Var(aX + bY ) = a2Var(X) + 2abCov(X,Y ) + b2Var(Y )

If X and Y are independent, then E[XY ] = E[X]E[Y ] so Cov(X,Y ) = 0. That means if
X and Y are independent,

Var(X + Y ) = Var(X) + Var(Y ) and Var(X − Y ) = Var(X) + Var(Y )

Definition 8.24 (Correlation). For two random variables X and Y , the correlation
between them is given by

Corr(X,Y ) =
Cov(X,Y )

SD(X)SD(Y )

Once again, if X and Y are independent, then Cov(X,Y ) = 0 =⇒ Corr(X,Y ) = 0.
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Theorem 8.25 (Properties of Correlations). Suppose Y = aX + b. Then,

Corr(X,Y ) =

{
1 a > 0

−1 a < 0

In general, −1 ≤ Corr(X,Y ) ≤ 1.

Proof. Let a, b be real numbers and Y = aX + b. Then,

Cov(X,Y ) = Cov(X, aX + b) = aCov(X,X) + Cov(X, b)

= aVar(X)

So if a > 0, then Cov(X,Y ) > 0, and if a < 0, Cov(X,Y ) < 0.

SD(Y ) = |a|SD(X)

so Corr(X,Y ) =
a ·Var(X)

[SD(X)]2|a|
=

{
1 a > 0

−1 a < 0

Example 8.26. X and Y are integer valued random variables with 0 < X ≤ 3 and
1 ≤ Y ≤ 2. P (X = x, Y = y) = kxy when positive, for some constant k. Find Cov(X,Y ).

Use the Joint PDF to solve for k:

1 = k(1 + 2 + 2 + 3 + 4 + 6) ⇐⇒ k =
1

18

E[X] =
1

18
(P (1, 1) + P (1, 2) + 2P (2, 1) + 2P (2, 2) + 3P (3, 1) + 3P (3, 2)) =

7

3

E[Y ] =
1

18
(P (1, 1) + P (2, 1) + P (3, 1) + 2P (1, 2) + 2P (2, 2) + 2P (3, 2)) =

5

3

E[XY ] =
1

18
(P (1, 1) + 2P (1, 2) + 2P (2, 1) + 4P (2, 2) + 3P (3, 1) + 6P (3, 2)) =

35

9

Therefore,

Cov(X,Y ) = E[XY ]− E[X]E[Y ] =
35

9
− 7 · 5

3 · 3
= 0

Recall from earlier that X and Y are independent if both

1. The support of (X,Y ), i.e., the points such that P (X = x, Y = y) > 0, is a
rectangular lattice
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2. P (X = x, Y = y) = P (X = x) · P (Y = y)

Since P (X = x, Y = y) = kxy, we can immediately say that f(x, y) factors as a function
of x times a function of y, implying these two variables are independent, and
Cov(X,Y ) = 0. This is a case where drawing out the entire calculation was unnecessary!

Corollary 8.27. If X and Y are independent, then

E[XY ] = E[X]E[Y ]

More generally,
E[g(X)h(Y )] = E[g(X)]E[h(Y )]

For instance, E[X2Y 3] = E[X2]E[Y 3] and it would follow that Cov(X2, Y 3) = 0.

Example 8.28 (SOA Practice Exam Q75). An insurance policy pays a total medical
benefit consisting of two parts for each claim. Let X represent the part of the benefit
that is paid to the surgeon, and let Y represent the part that is paid to the hospital. The
variance of X is 5,000, the variance of Y is 10,000, and the variance of the total benefit,
X + Y , is 17,000.

Due to increasing medical costs, the company that issues the policy decides to increase X
by a flat amount of 100 per claim and Y by 10% per claim. Calculate the total variance
of the total benefit after these revisions have been made.

The total benefit is given by X + 100 + 1.1Y .

Var(X + 100 + 1.1Y ) = Var(X + 1.1Y ) = Var(X) + 2(1.1)Cov(X,Y ) + (1.1)2Var(Y )

We are told that before the revisions,

17,000 = Var(X) + 2Cov(X,Y ) +Var(Y ) ⇐⇒ 17,000 = 5,000 + 2Cov(X,Y ) + 10,000

⇐⇒ Cov(X,Y ) = 1,000

Plug in our known values to evaluate the new total variance:

Var(X + 100 + 1.1Y ) = 5,000 + 2(1.1)(1,000) + 1.21(10,000) = 19,300

Example 8.29. Suppose P (X = Y = 0) = 1
2 and P (X = 1, Y = 1) =

P (X = −1, Y = 1) = 1
4 . Are X and Y independent?

We want to check if Cov(X,Y ) = 0.

E[X] =
1

4
− 1

4
= 0 E[Y ] =

1

4
− 1

4
= 0 E[XY ] = 0
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Therefore, Cov(X,Y ) = 0. However, they are dependent because the support isn’t
rectangular. Or,

P (X = Y = 0) =
1

2
̸= P (X = 0)(Y = 0)

Example 8.30. X and Y are random variables with Corr(X,Y ) = 0.6,Var(X) = 64,
and Var(Y ) = 100. Find Var(2X − 3Y ).

The formula for correlation (see Def. 8.24) requires us to know SD(X) and SD(Y ), which
are easily obtainable by taking square roots of our known variances
=⇒ SD(X) = 8, SD(Y ) = 10. Now, using the formula for correlation:

Corr(X,Y ) =
Cov(X,Y )

SD(X)SD(Y )
⇐⇒ 0.6 =

Cov(X,Y )

80

Cov(X,Y ) = 48

We can now calculate Var(2X − 3Y ):

Var(2X − 3Y ) = 4Var(X)− 12Cov(X,Y ) + 9Var(Y )

Var(2X − 3Y ) = 4(64)− 12(48) + 9(100) = 580

Example 8.31 (SOA Practice Exam Q77). The profit for a new product is given
by Z = 3X − Y − 5. X and Y are independent random variables with Var(X) = 1 and
Var(Y ) = 2. What is the variance of Z?

We are told X and Y are independent, so Cov(X,Y ) = 0. Therefore,

Var(Z) = Var(3X − Y − 5) = Var(3X − Y )

Var(Z) = 9Var(X) + Var(Y ) = 11

Example 8.32 (SOA Practice Exam Q80). Let X denote the size of a surgical claim
and let Y denote the size of the associated hospital claim. An actuary is using a model
in which E[X] = 5, E[X2] = 27.4, E[Y ] = 7, E[Y 2] = 51.4, and Var(X + Y ) = 8. Let
C1 = X + Y denote the size of the combined claims before the application of a 20%
surcharge on the hospital portion of the claim, and let C2 denote the size of the combined
claims after the application of that surcharge. Calculate Cov(C1, C2).

We are told C1 = X + Y and C2 = X + 1.2Y . We can use the given information to
compute Cov(X,Y ):

Var(X + Y ) = Var(X) + 2Cov(X,Y ) + Var(Y )

8 = E[X2]− (E[X])2 + 2Cov(X,Y ) + E[Y 2]− (E[Y ])2 ⇐⇒ Cov(X,Y ) = 1.6
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Apply the bilinearity of covariances to compute Cov(C1, C2):

Cov(C1, C2) = Cov(X + Y,X + 1.2Y )

= Cov(X,X) + Cov(X, 1.2Y ) + Cov(Y,X) + Cov(Y, 1.2Y )

By symmetry, Cov(X,Y ) = Cov(Y,X):

= Var(X) + 1.2Cov(X,Y ) + Cov(X,Y ) + 1.2Var(Y )

Cov(C1, C2) = (27.4− 25) + 1.2(1.6) + 1.6 + 1.2(51.4− 49) = 8.8

8.3 Conditional Moments

Definition 8.33 (Conditional Moments). Let X and Y be two (discrete) random
variables. Then,

E(X |Y = y) =
∑
x

x · P (X = x | Y = y)

Earlier we saw

P (X = 0 | Y = 1) =
1

6
P (X = 1 | Y = 1) =

1

3
P (X = 0 | Y = 1) =

1

2

Using conditional moments,

E[X | Y = 1] =

(
0 · 1

6

)
+

(
1 · 1

3

)
+

(
2 · 1

2

)
=

4

3

E[X | Y = 2] =

(
0 · 0.1

0.4

)
+

(
1 · 0.1

0.4

)
+

(
2 · 0.2

0.4

)
=

5

4

Note that E[X | Y ] is a function of Y . As a result, it is also a random variable!

P

(
E[X | Y ] =

4

3

)
= P (Y = 1) = 0.6

P

(
E[X | Y ] =

5

4

)
= P (Y = 2) = 0.4
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E[E[X | Y ] = 0.6

(
4

3

)
+ 0.4

(
5

4

)
= 1.3 = E[X]

That is not a coincidence! E[X | Y ] is random, but E[X] is non-random.

When E[X | Y = y], the conditional expectation of X, is a nice function of y, the
unconditional expectations are also closely related.

Theorem 8.34 (Double Expectation Theorem). If X and Y are (discrete) random
variables,

E[X] = E[E[X | Y = y]]

E[X] =
∑
all y

E[X | Y = y] · P (Y = y)

The second line is the law of total probability with respect to two variables!

This is useful when the distribution of X is complicated (making E[X] hard to find), but
the conditional distribution (X | Y ) and distribution of Y are both nice.

Example 8.35. Let N be the value rolled by a fair six-sided die. Suppose that I then flip
N independent fair coins. What is the expected number of heads? What is the variance
in the number of heads?

The key is that if we know N then it is easy to find the first and second moment

E[Heads | N ] =
N

2

So, by double expectation,

E[Heads] = E[E[Heads | N ]] = E

[
N

2

]
=

7

4

For the second moment, if we know N then the number of heads (H) is binomial with N
trials and p = 1

2 . That means

E[H | N ] =
N

2
, Var(H | N) =

N

22
=

N

4

E[H2 | N ] = Var(H | N) + (E[H | N ])2 =
N

4
+

N2

4

E[H2] = E[E[H2 | N ]] = E

[
N

4
+

N2

4

]
Since N is uniform on {1, 2, . . . , 6},

E[N ] =
1 + 6

2
Var(N) =

62 − 1

12
=

35

12
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E[N2] =
35

12
+

(
7

2

)2

=
91

6

E[H2] = E

[
N

4
+

N2

4

]
=

7

2 · 4
+

91

6 · 4
=

14

3

Var(H) =
14

3
−
(
7

4

)2

=
77

48

Theorem 8.36 (Law of Total Variation). Let X,Y be random variables. Then,

Var(X) = E[Var(X | Y )] +Var(E(X | Y ))

Theorem 8.37 (Variance of Random Sums). Suppose S = X1 + · · · + XN , where
X1, X2, · · · , are iid and N is an independent integer valued random variable. Then

Var(S) = E[N ]Var(X) +Var(N)(E[X])2

Proof. Use the Law of Total Variation (Thm 8.36). First compute E[S | N ] and Var(S | N):

E[S | N ] = NE[X], Var(S | N) = NVar(X)

Var(S) = E[Var(S | N)] + Var(E[S | N ])

= E[NVar(X)] + Var(NE[X])) = E[N ]Var(X) + Var(N)(E[X])2

Example 8.38. The number of losses N is Poisson with mean 3. Loss amounts are
mutually independent, and also independent of the number of losses, and have mean 5 and
variance 20. What is the expected value and variance of the sum of all losses?

Let X denote a loss amount.

E[S] = E[E[S | N ]] = E[NE[X]] = E[N ]E[X] = 3(5) = 15

As for the variance, use the Variance of Random Sums formula from Theorem 8.37. For a
Poisson random variable, the mean and variance are equivalent (i.e., Var(N) = E[N ] = 3):

Var(S) = E[N ]Var(X) + Var(N)(E[X])2 = 3(20) + 3(25) = 135
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Example 8.39 (SOA Practice Exam Q81). Two life insurance policies, each with a
death benefit of 10,000 and a one-time premium of 500, are sold to a couple, one for each
person. The policies will expire at the end of the tenth year. The probability that only
the wife will survive at least ten years is 0.025, the probability that only the husband will
survive at least ten years is 0.01, and the probability that both of them will survive at least
ten years is 0.96.

What is the expected excess of premiums over claims, given that the husband survives at
least ten years?

The total premium paid is 1,000. Since
we are conditioning on the husband sur-
viving, the possible total claims are ei-
ther 0 (if the wife survives) or 10,000 (if
the wife dies).
We have P (H lives ∩ W lives) = 0.96,
P (H lives ∩ W dies) = 0.01, and
P (W lives ∩H dies) = 0.025. Use this to
compute the remaining probability. We
will also need the probabilities:

P (W lives | H lives) =
0.96

0.97

P (W dies | H lives) =
0.01

0.97
We are tasked to compute

E[total premiums − total claims | H lives] = E[1,000 − total claims | H lives]

Use the conditional moment formula (Def. 8.33):

= 1000P (W lives | H lives) + (1000− 10000)P (W dies | H lives)

= 1000

(
96

97

)
− 9000

(
1

97

)
= 897
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Example 8.40 (SOA Practice Exam Q82). A diagnostic test for the presence of a
disease has two possible outcomes: 1 for disease present and 0 for disease not present. Let
X denote the state of a patient, and let Y denote the outcome of the diagnostic test. The
joint probability of X and Y is given by:

P (X = 0, Y = 0) = 0.8 P (X = 1, Y = 0) = 0.050

P (X = 0, Y = 1) = 0.025 P (X = 1, Y = 1) = 0.125

Calculate Var(Y | X = 1).

First, find that P (X = 1) = 0.05 + 0.125 = 0.175.

P (Y = 0 | X = 1) =
0.05

0.175
, P (Y = 1 | X = 1) =

0.125

0.175

Since Y is binary conditional on X = 1 with two outcomes (namely 0 and 1), we can use
what we know about Bernoulli random variables:

Var(Y | X = 1) = P (Y = 0 | X = 1)P (Y = 1 | X = 1) ≈ 0.204

. . .because P (Y = 0 | X = 1) can be thought of as a failure (diagnostic did not detect
given that the disease is present) whereas P (Y = 1 | X = 1) is a success (diagnostic
detected disease given the disease is present).
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9 Order Statistics

9.1 Order Statistics

In short, order statistics is a way of describing the maximums and minimums of a group
of random variables.

Example 9.1. Claim amounts for flood damage are independent random variables with
common density function

f(x) =

{
4
x5 for x > 1

0 otherwise

where x is the amount of a claim in thousands. Suppose 3 such claims X1, X2, X3 will be
made. Find the CDF and density of the largest of 3 claims.

Let M denote the maximum loss amount. The key idea is that M ≤ x if and only if each
of the 3 claims are at most x.

For one claim, f(x) = 4
x5 for x > 1

P (M ≤ x) = P (all 3 losses ≤ x) = (P (X1 ≤ x))3 =

(∫ x

1

4

t5
dt

)3

([
− 1

t4

]x
1

)3

=

(
1− 1

x4

)3

for x > 1

What about the density? We derived the CDF for M ,

FM (x) = P (all 3 losses ≤ x) =

(
1− 1

x4

)3

, x > 1

The density is obtained by taking the derivative:

fM (x) = 3

(
1− 1

x4

)2

· 4

x5

and the density is 0 for x < 1 as the loss amounts must all be at least 1 so their
maximum must also be at least 1 (and we know FM (1) = 0).

Example 9.2. Refer to the CDF in the previous example, and once again assume 3 such
claims will be made. What is the expected value of the smallest of the three claims?

Let Y denote the minimum loss amount. For minimums, the key idea is Y > x only if all
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the individual losses exceed x. We can find E[Y ] in one of two ways:

E[Y ] =

∫ ∞

0
P (Y > y)dy =

∫ ∞

1
yfY (y)dy

. . .of which the first is easier to compute:

For one claim, f(x) = 4
x5 for x > 1

P (Y > y) = P (all 3 losses > y) =

(∫ ∞

y

4

t5
dt

)3

=

([
− 1

t4

]∞
y

)3

=

(
1

y4

)3

=
1

y12
, y > 1

Now we integrate the survival probability. For y > 1, we integrate our new density
function. From 0 < y < 1, the minimum must be at least 1 because Y > x > 1, so the
survival probability is 1.

E[Y ] =

∫ 1

0
1dy +

∫ ∞

1

1

y12
dy = 1−

[
1

11y11

]∞
1

= 1 +
1

11
=

12

11

Alternatively, we have FY (y) = 1− 1
y12

for y > 1. Then

fY (y) =
12

y13
=⇒ E[Y ] =

∫ ∞

1
y · 12

y13
dy =

12

11

Now, let’s look at a discrete case:

Example 9.3. If I roll a fair die 5 times, what is the probability that the maximum roll
is 4?

Rather than counting cases, using inequalities is a much faster approach. Let M denote
the maximum roll. Then

P (M ≤ 4) = P (All rolls are ≤ 4) =

(
4

6

)5

Here we counted the probability of 5 rolls being at most 4. However, it is very possible
that none of those 5 rolls are actually 4. So, we need to subtract the probability that
M ≤ 3:

P (M = 4) = P (M ≤ 4)− P (M ≤ 3) =

(
4

6

)5

−
(
3

6

)5

≈ 0.1
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Definition 9.4 (General Max/Min Formulas). Suppose X1, . . . Xn are iid random
variables. Let Y1 = min{X1, . . . , Xn} and let Yn = max{X1, . . . Xn}. Then

P (max{X1, . . . , Xn} ≤ x) = P (Yn ≤ x) = (FX(x))n

P (min{X1, . . . , Xn} > x) = P (Y1 > x) = (P (X > x))n

If X1, . . . , Xn are iid discrete random variables, then

P (Yn = x) = P (Yn ≤ x)− P (Yn ≤ x− 1) = (FX(x))n − (FX(x− 1))n

P (Y1 = x) = P (Y1 ≥ x)− P (Y1 ≥ x+ 1)

Example 9.5. Suppose X1, X2, X3, X4 are iid exponential random variables, each with
mean 3. Find the probability that at least one of them exceeds 5.

If one of them exceeds 5, then the maximum must be greater than 5, so it is easier to
work with the CDF. Let M denote the maximum of our Xi. Then,

P (M > 5) = 1− P (M ≤ 5) = 1− (FX(5))4

= 1−
(
1− e−5/3

)4
≈ 0.567

Example 9.6. Let N1, N2, . . . , N5 be 5 iid Poisson random variables with mean 1.2. Find
the probability that the maximum of these 5 variables is 2.

P (M = 2) = (P (M ≤ 2))5 − (P (M ≤ 1))5

Where

P (M ≤ 2) = e−1.2 · (1.2)
2

2
+ e−1.2(1.2) + e−1.2 ≈ 0.8795

P (M ≤ 1) = e−1.2(1.2) + e−1.2 = 0.6626

Therefore,

P (M = 2) = (0.8795)5 − (0.6626)5 ≈ 0.3985

Example 9.7 (SOA Practice Exam Q64). Claim amounts for wind damage to insured
homes are independent random variables with common density function

f(x) =

{
3
x4 x > 1

0 otherwise

where x is the amount of a claim in thousands. Suppose 3 such claims will be made.
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What is the expected value of the largest of the three claims?

Let M be the maximum claim. We want to compute (P (X ≤ M))3 using the given
density function:

(P (X ≤ M))3 =

(∫ M

1

3

x4
dx

)3

=

([
− 1

x3

]M
1

)3

=

(
1− 1

M3

)3

The resulting function is our new CDF. To compute the expected value, we want to
compute the density of F (M):

f(M) = F ′(M) = 3

(
1− 1

M3

)2( 3

M4

)

=
9

M4

(
1− 2

M3
+

1

M6

)
=

9

M4
− 18

M7
+

9

M10

Now we can compute E[M ]:

E[M ] =

∫ ∞

0
Mf(M)dM =

∫ ∞

1

(
9

M3
− 18

M6
+

9

M9

)
dM

[
− 9

2M2
+

18

5M5
− 9

8M8

]∞
1

=
9

2
− 18

5
+

9

8
= 2.025

Since M is to be measured in thousands, the expected maximum value of any of the 3
claims is 2, 025 .

9.2 General Order Statistics

Suppose we have some data, and want to know whether or not the median m of the
sample is ≤ 4.

� Sample: 1.4, 5.3, 3.8: m = 3.8 ≤ 4

� Sample: 3.7, 2.3, 1.8: m = 2.3 ≤ 4

� Sample: 4.4, 5.3, 3.8: m = 4.4 > 4

� Sample: 4.1, 6.2, 5.5: m = 5.5 > 4

� Sample: 2.6, 1.5, 3.2: m = 2.6 ≤ 4

Note that the median is less than 4 if 2 or 3 of the data points are ≤ 4 and greater than 4
if 0 or 1 of the data points are ≤ 4. This idea will come in handy as we discuss medians
of iid random variables.
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Example 9.8. Claim amounts for wind damage to insured homes are independent random
variables with common density function

f(x) =

{
3
x4 x > 1

0 otherwise

where x is the amount of a claim in thousands. Suppose 3 such claims will be made. Find
the density and CDF of the median of the 3 claims.

Let Y denote the median. Y ≤ y if either 2 or 3 claims are ≤ y.

P (X ≤ y) =

∫ y

1

3

x4
dx = 1− 1

y3

P (Y ≤ y) = P (at least 2 claims ≤ y) = P (exactly 2 claims ≤ y) + P (all 3 claims ≤ y)

=

(
3
2

)(
1− 1

y3

)2( 1

y3

)
+

(
1− 1

y3

)3

We can factor out

(
1− 1

y3

)2

:

(
1− 1

y3

)2( 3

y3
+ 1− 1

y3

)
=

(
1− 1

y3

)2(
1 +

2

y3

)
Before taking the derivative, we will expand the terms:(

1− 1

y3

)2(
1 +

2

y3

)
=

(
1− 2

y3
+

1

y6

)(
1 +

2

y3

)
= 1− 3

y6
+

2

y9

F ′(y) = f(y) =
18

y7
− 18

y10

Definition 9.9 (Distribution of Order Statistics). Suppose that we have n data
points, denoted as X1, X2, . . . , Xn, where the Xi are iid random variables. We can sort the
n data points from smallest to largest:

X(1) < X(2) < X(3) < · · · < X(n)

Y1 < Y2 < Y3 < . . . < Yn

The i-th smallest data point is called the i-th order statistic, and is denoted either as X(i)

or Yi.
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So Y1 is the smallest data value, aka the minimum.

P (Y1 ≤ y) = P (at least one Xi is ≤ y)

= 1− P (all Xi > y) = 1− (1− P (Xq ≤ y))n = 1− (1− FX(y))n

Yn is the largest data value (aka the max), and

P (Yn ≤ y) = P (all n points are ≤ y) = [FX(y)]n

The other order statistics are messier:

P (Yn ≤ y) = (FX(y))n

P (Yn−1 ≤ y) = P (at least n− 1 are ≤ y)

= P (exactly n−1 are ≤ y)+P (all n are ≤ y) =

(
n

n− 1

)
(FX(y))n−1(1−FX(y))+(FX(y))n

Similarly,
P (Yn−2 ≤ y) = P (at least n− 1 are ≤ y)

= P (exactly n−2 are ≤ y)+P (all n−1 are ≤ y) =

(
n

n− 2

)
(FX(y))n−2(1−FX(y))+(FX(y))2

Definition 9.10 (Densities of Order Stats). Let fi(y) be the density of Yi. Then

fi(y) =
n!

(i− 1)!(n− i)!
(1− FX(y))n−iFX(y)i−1fX(y)

Example 9.11. Suppose that X1, X2, X3, X4, X5 are iid exponential random variables,
each with mean 4. Find the density of the median of those variables.

Let Y3 denote the median order statistic. From the formula in Definition 9.10,

f3(y) =
5!

2!3!

(
e−y/4

)2
(1− e−y/4)2

(
1

4
e−y/4

)

=
15

2
e−3y/4(1− e−y/4)2
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Example 9.12. Let W1,W2, . . . ,W4 be 4 idd Poisson random variables with mean 3.2.
Find the probability that the minimum of these 4 variables is 2.

Let m denote the minimum:

P (m = 2) = (P (m ≥ 2))4 − (P (m ≥ 3))3

P (m = 2) = (1− P (m = 0)− P (m = 1))4 − P (1− P (m ≤ 2)− P (m = 2))4

We have
P (m ≤ 2) = 1− e−3.2 − 3.2e−3.2 = 0.829

P (m = 2) = 0.5(3.2)2e−3.2 ≈ 0.209

Therefore P (m = 2) = (0.829)4 − (0.829− 0.209)4 ≈ 0.324

Example 9.13. Let X1, X2 and X3 be independent continuous random variables with
the following density function:

f(x) =

{√
2− x 0 < x <

√
2

0 otherwise

What is the probability that exactly 2 of the 3 random variables exceed 1?

For any one of the variables,

P (X ≤ 1) =

∫ 1

0
(
√
2− x)dx =

√
2− 1

2

To have exactly 2 of the 3 variables exceed 1, we also need exactly 1 less than 1, so

P (Exactly 2 Xi > 1) =

(
3
1

)
P (X ≤ 1)(P (X > 1))2 = 3

(√
2− 1

2

)(
1−

(√
2− 1

2

))2

= 3

(√
2− 1

2

)(
3

2
−
√
2

)2

Example 9.14. Let Y1 < Y2 < · · · < Y5 be the order statistics of a random sample of
size 5 from a continuous distribution with median m. What is P (Y2 < m < Y4)?

In order to have Y2 < m < Y4, we need to have either exactly 2 of the data points be less
than m, or exactly 3. The probability P (x < m) = 1

2 , so that gives us

P (Y2 < m < Y4) =

(
5
2

)(
1

2

)2(1

2

)3

+

(
5
3

)(
1

2

)3(1

2

)2

=
1

32
(10 + 10) =

5

8
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If there were only 4 sample points for instance, exactly 2 of the points need to be less
than m, which means

P (Y2 < m < Y3) =

(
4
2

)(
1

2

)4

=
3

8

Example 9.15. I roll a fair die 3 times. Let X be the maximum value of the rolls, and
Y the minimum value. What is P (X = 5, Y = 2)?

There are 4 cases:

� Two rolls equal 5, one roll equals 2

P (Case 1) =
3!

1!2!

(
1

6

)2(1

6

)
= 3

(
1

6

)3

� One roll equals 5, one roll equals 4, one roll equals 2

P (Case 2) =
3!

1!1!1!

(
1

6

)2(1

6

)
= 3

(
1

6

)3

� One roll equals 5, one roll equals 3, one roll equals 2. This has the same probability
as Case 2.

� One roll equals 5, two rolls equal 2

P (Case 4) =
3!

1!2!

(
1

6

)2(1

6

)
= 3

(
1

6

)3

The total probability is obtained by summing up each case:

(X = 5, Y = 2) = (3 + 6 + 6 + 3)

(
1

6

)3

=
1

12
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10 Important Formulas and Theorems

10.1 Discrete Probability

Fundamentals of Probability

Theorem 10.1. If A is a list of events and S is the sample space:

0 ≤ P (A) ≤ 1 P (S) = 1

If A1 ∩A2 = ∅ then
P (A1 ∪A2) = P (A1 +A2)

Definition 10.2 (Inclusion-Exclusion Principle).

P (A ∪B) = P (A) + P (B)− P (A ∩B)

P (A∪B ∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (A∩C)−P (B ∩C)+P (A∩B ∩C)

Definition 10.3 (Complements).

A′ = everything in sample space S but not in A

A ∩A′ = ∅ A ∪A′ = S

Theorem 10.4 (Probabilities with Complements). Let A,B,C be events, then

1. P (A′) = 1− P (A)

2. (P (A′))′ = P (A)

3. P (A ∩B) + P (A′ ∩B) = P (B) ⇐⇒ P (A ∩B) = P (B)− P (A′ ∩B)

4. P (A ∩B′ ∩ C ′) + P (A ∩B ∩ C) = P (A)

Definition 10.5 (Mutually Exclusive). Two events A and B are mutually exclusive
if

P (A ∩B) = ∅
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Theorem 10.6 (DeMorgans Laws). Let A1, . . . , Ak be events. Then,[
k⋃

i=1

Ai

]′
=

k⋂
i=1

A′
i

[
k⋂

i=1

Ai

]′
=

k⋃
i=1

A′
i

Conditional Probability

Definition 10.7 (Conditional Probability). Let A and B be two events. The con-
ditional probability of A given B is

P (A|B) =
P (A ∩B)

P (B)
=

P (AB)

P (B)
.

Definition 10.8 (Independence). Events A and B are independent if

P (A ∩B) = P (A) · P (B)

Theorem 10.9 (Law of Total Probability). If A1, A2, . . . , Ak are disjoint and P (A1)+
P (A2) + · · ·+ P (Ak) = 1 then

� P (B) = P (B ∩A1) + P (B ∩A2) + · · ·+ P (B ∩Ak)

� P (B) = P (A1)P (B|A1) + · · ·+ P (Ak)P (B|Ak)

Theorem 10.10 (Bayes’ Theorem). Suppose A1, . . . , Ak are a partition of the sample
space. Then

P (A1|B) =
P (A1 ∩B)

P (B)
=

P (A1)P (B|A1)∑k
i=1 P (B ∩Ai)

=
P (A1)P (B|A1)∑k
i=1 P (Ai)P (B|Ai)

The final denominator sums one event over all cases.

Discrete Moments

Definition 10.11. For a discrete random variable X, y is the mode of X if P (X = y) ≥
P (X = x) for all x (i.e. the mode y is the input that maximizes P (X = y)).

Definition 10.12. The median of a random variable X is the smallest m such that
P (X ≤ m) = F (m) ≥ 1

2 .
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Definition 10.13 (Percentile). The 100% · pth percentile πp is the smallest possible x
such that P (X ≤ x) ≥ p.

Definition 10.14 (Expected Value). If X is a discrete random variable, then

E[X] =
∑
x

x · P (X = x)

E[g(X)] =
∑
x

g(x) · P (X = x)

Theorem 10.15 (Transformations on Variance). Let X be a random variable, a, b ∈
R (constants). Then,

1. Var(aX) = a2Var(X)

2. Var(X + b) = Var(X)

3. Var(aX + b) = a2Var(X)

Definition 10.16 (Std. Deviation and Coefficient of Variance). Let X be a
random variable with variance Var(x). Then

SD(X) = σX =
√
Var(X) CV(X) =

σ

µ
=

SD(X)

E[X]

If c ∈ R is a constant,

SD(cX) = |c|Var(X) CV(cX) = CV(X)

Combinations and Permutations

Definition 10.17 (Combinations and Permutations). If there are n distinct items
and want to select a group of k items, the number of combinations can be written as

nCk or

(
n
k

)
=

n!

k!(n− k)!

If an ordering is involved, the number of permutations are

nPk =
n!

(n− k)!
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Common Distributions

Definition 10.18 (Bernoulli Random Variables). A Bernoulli(p) random variable,
or a Bernoulli 0-1 random variable, is a variable that can only be 0 or 1. Usually 1 is
considered a success. If p is the probability of success, then

P (X = 1) = p P (X = 0) = 1− p

The mean and variance follow:

E[X] = p Var(X) = p(1− p)

Definition 10.19 (Binomial Random Variables). X is a binomial (n, p) random
variable if X is the number of successes in n independent trials, each of which is a success
with the same probability p.

P (X = k) =

(
n
k

)
pk(1− p)n−k

E[X] = np Var(X) = np(1− p)

Theorem 10.20 (Binomial Expansion). For any real numbers a, b and positive integer
n:

(a+ b)n =

n∑
k=0

(
n
k

)
akbn−k

Definition 10.21 (Multinomial Distribution). Suppose there are n independent tri-
als, each with the same r possible outcomes. Let p1, p2, . . . pr be the probabilities of the
outcomes, and Xi the number of trials resulting in the i-th outcome. Then,

P (X1 = k1, X2 = k2, . . . , Xr = kr) =
n!

k1!k2! · · · kn!
pk11 pk22 · · · pkrr

If Xi, Xj are trials whose respective probabilities of success are pi and pj , then

E[Xi] = npi Var(Xi) = npi(1− pi) Cov(Xi, Xj) = −npipj
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Definition 10.22 (Hypergeometric Distribution). Say we have N trials/objects
with m successes. If you randomly select n of them without replacement, then X ∼
Hyp(n,N,m) is hypergeometric and has distribution

P (X = k) =

(
m
k

)(
N −m
n− k

)
(
N
n

)
for k = 0, 1, . . . ,min(m,n). If X follows a hypergeometric distribution,

E[X] =
mn

N
Var(X) =

mn(N − n)(N −m)

N2(N − 1)

Key Discrete Distributions

Theorem 10.23 (Geometric Series Convergence). Let |r| < 1 and a be a real
number. Then,

∞∑
k=0

ark =
a

1− r

Theorem 10.24 (Geometric Series starting at 1). Suppose X is a geometric random
variable on {1, 2, . . .} with parameter p if X is the number of trials up to, and including,
the first success. Then,

E[X] =
1

p
Var(X) =

1− p

p2

Theorem 10.25 (Geometric Series starting at 0). Suppose Y is a geometric random
variable on 0, 1, 2, . . . if Y counts the number of failures before the first success. Then

E[Y ] = E[X]− 1 =
1

p
− 1 Var(Y ) =

1− p

p2

Theorem 10.26 (Memoryless Property). If N follows a discrete geometric distribu-
tion with parameter p, then (N − k | N > k) is a geometric distribution starting at 1 with
the same p. This holds whether N starts at 0 or 1.
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Definition 10.27 (Negative Binomial Distribution). Suppose N is a negative bino-
mial random variable with parameters r and p if it is the sum of r independent geometric
random variables starting at 0. It is the number of failures before the r-th success.

P (N = n) =

(
n+ (r − 1)

n

)
pr(1− p)n

E[N ] = r

(
1

p
− 1

)
Var(N) =

r(1− p)

p2

Definition 10.28. X is a Poisson(λ) random variable if

P (X = n) = e−λλ
n

n!
for n = 0, 1, 2, . . .

E[N ] = Var(N) = λ

Theorem 10.29 (Sums of Poisson Variables). If N ∼ Pois(λ),M ∼ Pois(µ) and
they are independent, then

P (N +M = n) = e−(λ+µ) · (λ+ µ)n

n!

Deductibles and Limits

Definition 10.30 (Payment, Uncovered Cost, Total Loss). Suppose X represents
the amount of a loss. If there is a deductible of d, then the resulting (insurance) payment
is

Payment = (X − d)+ =

{
0, X ≤ d

X − d, X > d

The uncovered cost to the insured, or the expense not protected/paid for by insurance
policy is

Uncovered Cost = min{X, d} = X ∧ d =

{
X, X ≤ d

d, X > d

Lastly, the total loss is the sum of the insurance payment and uncovered cost:

X = (X − d)+ + (X ∧ d)

Note that min{X, d} and X ∧ d are equivalent notation-wise.
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Theorem 10.31 (Expected Payment). Suppose X represents the amount of a loss.
Then,

E[(X − d)+] = E[X]− E[X ∧ d]

Definition 10.32 (Policy Limit). Let X be the loss amount, and u the policy limit.
With no deductible,

Payment =

{
X, X ≤ u

u, u < X

In this case, Payment = min{X,u} = X ∧ u.

10.2 Continuous Probability

Continuous Distributions I

Definition 10.33. The cumulative distribution function (CDF) of X is given by

F (x) = FX(x) = P (X ≤ x).

If Fx is differentiable, its derivative

fX(t) = F ′(x)

is referred to as the density of X. By the Fundamental Theorem of Calculus, the CDF is
then

F (x) =

∫ x

−∞
f(y)dy

Definition 10.34 (Percentiles and Medians). x is a k-th percentile of X if F (x) =
k%. The median is the 50th percentile, so F (x) = 0.5 at the median.
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Definition 10.35 (Mean/Variance of Continuous Random Variables). If X is
random variable whose density function f(x) is purely continuous, then

E[X] =

∫
x
xf(x)dx

Once again, if g is a function of X, then

E[g(X)] =

∫
x
g(x)f(x)dx

The discrete formula for variance also applies to continuous functions.

Var(X) = E[X2]− (E[X])2 =

∫
x
x2f(x)dx−

(∫
x
xf(x)dx

)2

Theorem 10.36 (Mean of a CDF using the Survival Method). Suppose that
P (X ≥ 0) = 1 and X is continuous. Then

E[X] =

∫ ∞

0
P (X > x)dx

Key Continuous Distributions

Theorem 10.37 (Mean and Variance of Uniform Distributions). Let X ∼
Uniform(a, b). Then

E[X] =
a+ b

2
Var(X) =

(b− a)2

12

Definition 10.38 (Density and CDF of Exponential Distributions). X is an
exponential random variable with mean θ if

FX(x) = 1− e−
x
θ 1− F (x) = e−

x
θ

Sometimes λ = 1
θ will be called a rate instead of an exponential.

Fx(x) = 1− e−λx

f(x) = F ′(x) =
1

θ
e−

x
θ = λe−λx for x > 0

E[X] = θ Var(X) = θ2

131



Ryan Gomberg Probability Notes Page 132 of 138

Definition 10.39 (Gamma Distribution CDFs). At α = 1 we have the exponential
CDF.

α = 1 : F (x) = 1− e−x/θ

α = 2 : F (x) = 1− e−x/θ − x

θ
e−x/θ

α = 3 : F (x) = 1− e−x/θ − x

θ
e−x/θ −

(x
θ

)2
· 1
2
e−x/θ

Definition 10.40 (Gamma Distribution Densities).

f(x) =
1

(α− 1)!
· x

α−1

θα
e−x/θ

Theorem 10.41 (Mean and Variance of Gamma Distributions). Let X ∼ Exp(θ)
and Y ∼ Gamma(α, θ). If α is an integer, then Y is a sum of α iid Exp(θ) variables.

E[Y ] = αE[X] = αθ Var(Y ) = αVar(X) = αθ2

Definition 10.42 (Beta Distributions). X is Beta(a, b) if f(x) = cxa−1(1− x)b−1 for
0 < x < 1, and 0 otherwise,

where c =
(a+ b− 1)!

(a− 1)!(b− 1)!

Moreover,

E[X] =
a

a+ b
E[X2] =

a(a+ 1)

(a+ b)(a+ b+ 1)

Normal Approximations

Definition 10.43 (Normal Distributions). A standard normal distribution has the
density

f(x) =
1√
2π

e−x2/2

A standard normal Z has mean µ = 0 and variance σ = 1.

132



Ryan Gomberg Probability Notes Page 133 of 138

Theorem 10.44 (Densities of Normal Variables). If Y ∼ N (µ, σ2), then

f(y) =
1

σ
√
2π

e−(y−µ)2/2σ2

Definition 10.45 (Normal CDFs). Suppose that Z is a standard normal (Z ∼
N (0, 1)). Then

Φ(z) = P (Z ≤ z)

denotes the CDF of Z.

Theorem 10.46 (Sums of Normal Distributions). f X and Y are independent
normal distributions, then X + Y is also a normal distribution.

E[X + Y ] = E[X] + E[Y ] Var(X + Y ) = Var(X) +Var(Y )

X + Y ∼ N (µX + µY , σ
2
X + σ2

Y )

Theorem 10.47 (Central Limit Theorem (CLT)). If X1, . . . , Xn are identically
independently distributed random variables, then

(X1 + · · ·+Xn)− nE[X1]√
nVar(X1)

∼ N (0, 1)

Definition 10.48 (Lognormal Random Variables). Y is a lognormal if Y = eX ,
X is normal. In words, the log of a lognormal distribution is normal.

Theorem 10.49 (Lognormal Moments). Suppose X ∼ N (µ, σ2) and Y = eX is the
corresponding lognormal. Then

E[Y ] = eµ+σ2/2 E[Y 2] = e2µ+2σ2
E[Y n] = enµ+(nσ)2/2

10.3 Multivariate Probability

Joint Distributions and Moments
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Definition 10.50 (Joint PMF). Suppose we have 2 random variables, X and Y . The
joint probability mass function is P (X = x, Y = y). The total probability is still 1:∑

x

∑
y

P (X = x, Y = y) = 1

Theorem 10.51 (Properties of Joint CDFs).

1. 0 ≤ F (x, y) ≤ 1

2. F (x,∞) = P (X ≤ x, Y < ∞) = P (X ≤ x) = FX(x)

3. F (∞, y) = P (X < ∞, Y ≤ y) = P (Y ≤ y) = Fy(y)

4. F (∞,∞) = 1

5. F (−∞, y) = 0 = F (x,−∞)

Definition 10.52 (Marginal Distributions). For discrete variables,

P (X = x) =
∑
y

P (X = x, Y = y)

is the marginal distribution of X. In words, it’s the distribution of X without knowing
Y .

Definition 10.53 (Conditional Distributions). For discrete random variables X,Y ,

P (X = x | Y = y) =
P (X = x, Y = y)

P (Y = y)
=

P (X = x, Y = y)∑
x P (X = x, Y = y)

The denominator makes the conditional distribution itself a probability distribution (be-
cause the sum of marginal distributions add up to 1!)

Definition 10.54 (Multivariate Independence). X and Y are independent if
P (X = x | Y = y) = P (X = x). For discrete variables,

P (X = x, Y = y) = P (Y = y) · P (X = x) if X and Y are independent
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Definition 10.55 (Multivariate Mean). For discrete random variables X and Y ,

E[g(X,Y )] =
∑
x

∑
y

g(x, y) · P (X = x, Y = y)

Definition 10.56 (Covariance). Suppose X,Y are two random variables. Then

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

Corollary 10.57 (Bilinearity of Covariances).

Cov(aX + bY, cW + dZ) = Cov(aX, cW ) + Cov(aX, dZ) + Cov(bY, cW ) + Cov(bY, dZ)

= acCov(X,W ) + adCov(X,Z) + bcCov(Y,W ) + bdCov(Y,Z)

Corollary 10.58 (Variance of a Sum).

Var(aX + bY ) = a2Var(X) + 2abCov(X,Y ) + b2Var(Y )

Var(aX − bY ) = a2Var(X)− 2abCov(X,Y ) + b2Var(Y )

If X and Y are independent,

Var(aX + bY ) = a2Var(X) + b2Var(Y ) = Var(aX − bY )

Definition 10.59 (Correlation). For two random variables X and Y , the correlation
between them is given by

Corr(X,Y ) =
Cov(X,Y )

SD(X)SD(Y )

Corollary 10.60. If X and Y are independent, then

E[XY ] = E[X]E[Y ]

More generally,
E[g(X)h(Y )] = E[g(X)]E[h(Y )]
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Definition 10.61 (Conditional Moments). Let X and Y be two (discrete) random
variables. Then,

E(X |Y = y) =
∑
x

x · P (X = x | Y = y)

Theorem 10.62 (Double Expectation Theorem). If X and Y are (discrete) random
variables,

E[X] = E[E[X | Y = y]]

E[X] =
∑
all y

E[X | Y = y] · P (Y = y)

Theorem 10.63 (Law of Total Variation). Let X,Y be random variables. Then,

Var(X) = E[Var(X | Y )] +Var(E(X | Y ))

Theorem 10.64 (Variance of Random Sums). Suppose S = X1 + · · ·+XN , where
X1, X2, · · · , are iid and N is an independent integer valued random variable. Then

Var(S) = E[N ]Var(X) +Var(N)(E[X])2

Order Statistics

Definition 10.65 (General Max/Min Formulas). Suppose X1, . . . Xn are iid random
variables. Let Y1 = min{X1, . . . , Xn} and let Yn = max{X1, . . . Xn}. Then

P (max{X1, . . . , Xn} ≤ x) = P (Yn ≤ x) = (FX(x))n

P (min{X1, . . . , Xn} > x) = P (Y1 > x) = (P (X > x))n

If X1, . . . , Xn are iid discrete random variables, then

P (Yn = x) = P (Yn ≤ x)− P (Yn ≤ x− 1) = (FX(x))n − (FX(x− 1))n

P (Y1 = x) = P (Y1 ≥ x)− P (Y1 ≥ x+ 1)
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Definition 10.66 (Distribution of Order Statistics). Suppose that we have n data
points, denoted as X1, X2, . . . , Xn, where the Xi are iid random variables. We can sort the
n data points from smallest to largest:

X(1) < X(2) < X(3) < · · · < X(n)

Y1 < Y2 < Y3 < . . . < Yn

The i-th smallest data point is called the i-th order statistic, and is denoted either as X(i)

or Yi.

Definition 10.67 (Densities of Order Stats). Let fi(y) be the density of Yi. Then

fi(y) =
n!

(i− 1)!(n− i)!
(1− FX(y))n−iFX(y)i−1fX(y)
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11 References

All diagrams are self-curated. However, a lot of the material and diagrams were heavily
inspired from https://www.theinfiniteactuary.com/
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