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1 Model Types and Algorithms

1.1 Models Types and Accuracy

Supervised vs. Unsupervised Learning

Supervised learning is often referred to as learning with training. Given data 𝑋, 𝑦, we
want to fit the mapping between 𝑋 and 𝑦 with training data and make predictions with
the new 𝑦 given new 𝑋 in the test dataset. The ultimate goal is to minimize the distance
between �̂�, the predicted value, and 𝑦.

Unsupervised learning is learning without training. This time, there is no response 𝑦 to
be predicted. Instead, we explore the pattern of data using methods such as clustering or
dimension reduction.

Regression vs. Classification

In supervised machine learning models, regression is often used with numerical data
and classification is used with categorical data (consists of multiple classes or levels).

Parametric vs. Non-parametric models

Parametric machine learning models assume that the function can be modeled in a
functional form and follows a procedure to fit and train the model. In linear regression,
the functional form is a linear combination of unknown parameters and our predictors.

Non-parametric machine learning algorithms, in contrast, does not explicitly assume a
functional form is possible and limits the need for finding parameters. Instead, it uses
patterns and trends in existing training data to predict results in the test data. The
K-nearest neighbors algorithm is just one example. Test points are compared to a set
amount of training data points that are closest, or similar, to it.

Measuring accuracy in machine learning models

The standard measurement of accuracy is computing the mean squared error (MSE). If 𝑦𝑖
and 𝑥𝑖 are observations in training data and 𝑓 is the function described by the model, then

Training MSE =
1
𝑛

𝑛∑
𝑖=1

(
𝑦𝑖 − 𝑓 (𝑥𝑖)

)2
.

This is the function to be minimized. Note that we write 𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜀𝑖 , where 𝜀𝑖 is the
error/noise caused by 𝑥𝑖 . The MSE for the test data can be expressed as

Test MSE = 𝐸[𝜀2] +
(
𝑓 (𝑥0) − 𝐸𝑥𝑖 ,𝜀[ 𝑓 (𝑥0)]

)2︸                       ︷︷                       ︸
Bias( 𝑓 (𝑥0))

+𝐸𝑥𝑖 ,𝜀
[
𝑓 (𝑥0) − 𝐸𝑥𝑖 ,𝜀[ 𝑓 (𝑥0)]

]2︸                              ︷︷                              ︸
Var( 𝑓 (𝑥0))

.

Here we use properties of expectations from probability theory. The above equation is

1



Ryan Gomberg Math 178 Notes (Mathematical Machine Learning) Page 2 of 48

merely showing that the test MSE is a sum of the bias, variance, and random error (often
negligible).
• Bias is the error introduced by making assumptions to simplify the learning process.

For example, using a linear model to a dataset with a nonlinear relationship is will
have high bias, for it is trying to simplify but does not fit the model. This is underfitting.

• Variance is the error caused by small fluctuations in the model’s test data. A model
with high variance will not only capture the patterns in the training data, but the noise
as well. This is overfitting. High variance models work well with training data but
poorly on new test data.

Combining these two factors is what we know as the Bias-Variance Tradeoff. Increasing
the bias of a linear model lowers the variance, and vice versa. Generally, we want to
strike a balance between the two factors that will minimize the test MSE.

Flexible vs. Inflexible Models

Flexible models are often used to capture more complex relationships, such as decision
trees or high degree polynomial regression. They can readily adapt to changes in data
(i.e. new training/test data). Flexible models are more prone to overfitting and
consequently having high variance.

Inflexible models follow a rigid, functional form that cannot capture complex patterns in
data and assume a rigid, predefined relationship between inputs and outputs. Flexible
models tend to have more bias and succumb to underfitting.

1.2 Basic Algorithms

K-Nearest Neighbors (KNN) Algorithm

The K-Nearest Neighbors method is a supervised learning algorithm that makes
predictions based on how similar new data points are to existing data. We compute the
Euclidean distance between the test data point and all of the observed data, then
choosing 𝑘 of the existing points that are closest in distance.

• In a classification setting, the majority class among the 𝑘 neighbors determines the
predicted class.

• In a regression setting, the predicted value is the average of the values of the 𝑘
neighbors.

𝑘 is what we call a hyperparamter, or tuning parameter; it does not depending on the
training process. As we increase 𝑘, the flexibility of the algorithm increases. If we choose
too many neighbors, we may observe overfitting and misleading predictions.
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Normal Equation for Linear Regression

Recall that a linear model with 𝑝 predictors is approximated by

𝑓 (𝑥) = 𝑐0 + 𝑐1𝑥1 + 𝑐2𝑥
2 + · · ·𝑐𝑝𝑥𝑝 .

Where 𝑐0 , · · ·, 𝑐𝑝 are unknown parameters. We want to find these parameters in a way
that will minimize the error

min
𝑤

𝑛∑
𝑖=1

𝑦𝑖 − 𝑓 (𝑥𝑖).

𝑤 is just the set of parameters we want to solve for in the above problem. Recall that with
higher degree polynomial regression (degrees of freedom > 2), it is nonlinear with
respect to 𝑥 but it is linear with respect to the parameters. Hence, we can apply methods
from linear algebra to solve the optimization problem. The most common approach is
through gradient descent, for which we take partial derivatives of each parameter and
iterate until we find the minimum. The solution is given by the normal equation:

�̂� =
(
𝑀𝑇𝑀

)−1
𝑀𝑇−→𝑌 .

If 𝑛 is the number of observations in our training data, then 𝑀 is a 𝑛 × (𝑝 + 1)matrix
containing the intercept terms (column of 1s) and the predictors in our training data.

−→
𝑌

is a 𝑛 × 1 vector consisting of the response values in our training data.
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2 Classification and Generative Models

Previously, we assumed that we can fit a model 𝑦 = 𝑓 (𝑥) + 𝜀, where 𝜀 does not depend on
𝑥. Now, suppose we let the error also depend on 𝑥. Then, 𝑦 = 𝑓 (𝑥) + 𝜀(𝑥). We say that
𝑓 (𝑥) is deterministic and 𝜀(𝑥) is a random variable. The main objective is to find

𝑝(𝑦, 𝑥) ≈ 𝑃(𝑌 = 𝑦 | 𝑋 = 𝑥)

or, that approximation of a model relative to the probability that it predicts 𝑦 given 𝑥. For
the models in this section, we assume that the 𝑌 is a discrete random variable to avoid
complications.

2.1 MLE and MAP estimations

Maximum Likelihood Estimation

We proceed by using a standard logistic regression model. Assume that we are given
data (−→𝑥𝑖 , 𝑦𝑖), where 𝑌 can take on two classes: 𝐴 or 𝐵. Our goal is to have our model �̂�
roughly estimate the probability that each outcome occurs. A standard linear regression
model would argue that we can approximate in the form 𝑌 = 𝛽0 + 𝛽1𝑋. However, this can
quickly violate our goal! Recall that our objective function is a probability function, so
the range of values must be 0 < 𝑃(𝑌 = 𝑦 | 𝑋 = 𝑥) < 1. This is where we introduce logistic
regression: a model that takes on the form

�̂�(𝑌 ∈ 𝐴 | 𝑋 = 𝑥) = 𝑒𝛽0+𝛽1𝑥

1 + 𝑒𝛽0+𝛽1𝑥
.

This so-called standardized form alleviates the negativity issue and forces all outputs to be
within 0 and 1. Now that we have developed a probability function, we hit another wall.
How can we ensure that we achieve, or get close to, the observations (−→𝑥𝑖 , 𝑦𝑖) under our
new model? The idea is to maximize the probability that we get said observations. This is
where we introduce the likelihood function:

ℒ
(
𝛽0 ,
−→
𝛽
)
=

𝑛∏
𝑖=1

𝑃(𝑌 = 𝑦𝑖 | 𝑋 = 𝑥𝑖) =
{
�̂�(𝑥) when 𝑦 ∈ 𝐴
1 − �̂�(𝑥) when 𝑦 ∈ 𝐵

where 𝑛 observations are given and assumed that each observation is independent and
𝛽0 ,
−→
𝛽 contains the coefficients 𝛽1 , · · ·, 𝛽𝑛 . We can rewrite this as the product of

probabilities that an observation falls into each class:

ℒ
(
𝛽0 ,
−→
𝛽
)
=

∏
𝑖:𝑦𝑖∈𝐴

�̂�(𝑥𝑖)
∏
𝑖:𝑦𝑖∈𝐵
(1 − �̂�(𝑥𝑖)).

Finding such 𝛽0 ,
−→
𝛽 that maximizes ℒ is the Maximum Likelihood Estimator (MLE).

4



Ryan Gomberg Math 178 Notes (Mathematical Machine Learning) Page 5 of 48

Example 2.1. Suppose we are given a fair die and we roll it four times with the observed
outcomes 5, 2, 3, 6. Let 𝜃 be the probability of rolling a 3. What is the Maximum Likelihood
Estimation for 𝜃?
Let 𝑃(3) = 𝜃 and 𝑃(Not 3) = 1 − 𝜃. Then,

𝑓 (𝜃) = 𝜃(1 − 𝜃)3.

We take the natural log of 𝑓 , differentiate, and set equal to zero to find the corresponding
𝜃:

ln( 𝑓 (𝜃)) = ln(𝜃) + 3 ln(1 − 𝜃) =⇒ 𝑑

𝑑𝜃
ln( 𝑓 (𝜃)) = 1

𝜃
+ 3

1 − 𝜃
= 0⇐⇒ 𝜃 =

1
4 .

One could argue that this is indeed the maximum through the second derivative test.

Maximum A Posteriori (MAP) Estimation

Recall Bayes’ Formula from probability theory. If 𝐴 and 𝐵 are both events, each assigned
their own probability, then the conditional probability

𝑃(𝐴|𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴)
𝑃(𝐵) .

Here 𝑃(𝐴|𝐵) is the posterior probability, or the probability obtained after we take our data
into consideration. 𝑃(𝐴) is the prior, or the probability before we take our data into
consideration. If we are given prior knowledge or data, then we can try to maximize
Bayes’ Theorem, or the posterior probability. If 𝜃 is the parameter of interest and 𝑋 is our
observed data, then

argmax
𝜃

𝑃(𝑋|𝜃)𝑃(𝜃).

This is the Maximum A Posteriori Estimation. Since we are maximizing with respect to
𝜃, we treat 𝑃(𝑋) as a constant and can ignore it.

Example 2.2. Use the same setup from the previous example. Given the priors 0.8,
0.45, 0.1, 0.04 for 𝜃 = 0.5, 0.3, 0.7, 0.6 respectively, compute the Maximum A Posteriori
Estimation for 𝜃. Compute the posteriori for each prior 𝜃 (where 𝑃(𝑋|𝜃) = 𝑓 (𝜃) from past
example) and determine which is the largest:
𝜃 = 0.5 =⇒ (0.5)4(0.8) ≈ 0.08
𝜃 = 0.3 =⇒ 0.3(0.7)3(0.45) ≈ 0.0463
𝜃 = 0.7 =⇒ 0.7(0.3)3(0.1) ≈ 0.00189
𝜃 = 0.6 =⇒ 0.6(0.4)3(0.04) ≈ 0.001536
The Maximum A Posteriori is therefore 0.08 for when 𝜃 = 0.05.

Similar to MLE, we can compute MAP by taking the natural log and differentiating to
easily obtain the maximum.
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For logistic models, we choose an objective MLE (not MAP!) function, optimize, and
apply new inputs to predict new samples �̂�

(
𝑌|−→𝑋 = 𝑋0

)
directly.

2.2 Generative Models

Naive Bayes, LDA, QDA

Compared to logistic regression, generative models are used to learn how the data itself
is distributed through training the data and then testing the model on new data. Hence,
they aim to learn the joint probability distribution 𝑃(𝑋,𝑌) (supervised case) or 𝑃(𝑋)
(unsupervised case). For now, we focus on three generative models: Naive Bayes and
Linear/Quadratic Discriminant Analysis.

As given by its name, the Naive Bayes’ algorithm is derived from Bayes’ formula. For
Naive Bayes, the underlying assumption is that the observations in each class is
independent of each other. Thus, we apply the basic law of probability
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵). Let

−→
𝑋 be the vector containing our features and let

(
𝑋 𝑗|𝑌 = 𝑘

)
be

the 𝑗-th observation in the 𝑘-th class. Then, the Naive Bayes’ formula is given as

�̂�
(−→
𝑋 |𝑌 = 𝑘

)
=

∏
𝑗

�̂�
(
𝑋 𝑗 | 𝑌 = 𝑘

)
.

The expression itself says that the probability that a sample falls into a class is computed
as the product of probabilities for each feature within that class. We also say that this
conditional probability is directly proportional to the prior of the class. Generally, Naive
Bayes is put to quick use for simple classification problems, such as spam/fraud
detection, or recommendation systems.

Now, we consider two other algorithms that rely on a different distribution than Naive
Bayes. To motivate this idea, we once again consider Bayes’ Theorem. Suppose we are
given data {(𝑥𝑖 , 𝑦𝑖)}

𝑖={1,···,𝑁}
and we want to classify 𝑥0 into 𝑘 classes. Then we compute

𝑃[𝑌 = 𝑘|𝑋 = 𝑥] = 𝑃[𝑌 = 𝑘]𝑃[𝑋 = 𝑥|𝑌 = 𝑘]
𝑃[𝑋 = 𝑥] .

Suppose we cannot assume that the observations in each class are independent.
• We know how to compute 𝑃[𝑌 = 𝑘]within a dataset.
• How do we find 𝑃[𝑋 = 𝑥|𝑌 = 𝑘]?
While there is no definitive answer, the easiest (and most used) approach is to make an
assumption about the type of distribution that it follows. Let 𝑃[𝑋 = 𝑥|𝑌 = 𝑦] = 𝑓𝑘(𝑥) and
say that 𝑓𝑘(𝑥) follows a normal Gaussian distribution with mean 𝜇𝑘 (mean parameter for
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𝑘-th class) and variance 𝜎2
𝑘

(variance for 𝑘-th class). Then,

𝑓𝑘(𝑥) =
1√

2𝜋𝜎𝑘
𝑒

(𝑥−𝜇𝑘 )2

2𝜎2
𝑘 .

We can summarize the behavior of this distribution by writing 𝑓𝑘(𝑥) ∼ 𝒩
(
𝜇𝑘 , 𝜎2

𝑘

)
.

As for 𝑃[𝑋 = 𝑥], we multiply the probability that an observation lies in the 𝑙-th class (for
1 ≤ 𝑖 ≤ 𝑘) by the probability that 𝑋 takes on a certain outcome 𝑥 given that it is in the 𝑙-th
class. Then, you sum this across all 𝑘 classes. Mathematically, this is expressed as

𝑃[𝑋 = 𝑥] =
𝑘∑
𝑙=1

𝑃[𝑌 = 𝑙]𝑃[𝑋 = 𝑥|𝑌 = 𝑙] (weighted average).

Before proceeding, let us clean up with some more notation. Let 𝑝𝑘(𝑥) = 𝑃[𝑌 = 𝑘|𝑋 = 𝑥]
and 𝜋𝑘 = 𝑃[𝑌 = 𝑘] (prior). Notice how we can rewrite 𝑃[𝑋 = 𝑥] using normal
distributions as well:

𝑃[𝑋 = 𝑥] =
𝑘∑
𝑙=1

𝜋𝑙 ·
1√

2𝜋𝜎𝑙
𝑒

(𝑥−𝜇𝑙 )2

2𝜎2
𝑙 .

This enables us to obtain the final form of 𝑝𝑘(𝑥):

𝑝𝑘(𝑥) =
𝜋𝑘 · 1√

2𝜋𝜎𝑘
𝑒

(𝑥−𝜇𝑘 )2

2𝜎2
𝑘

∑𝑘
𝑙=1 𝜋𝑙 · 1√

2𝜋𝜎𝑙
𝑒

(𝑥−𝜇𝑙 )2

2𝜎2
𝑙

.

Now that we have a closed-form expression, we want to optimize it. That is to say, we
want to maximize the posterior probability, or probability that we put a sample in the
𝑘-th class given the features in 𝑋. Once again, logarithms come to the rescue! Define
𝛿𝑘(𝑥) = ln(𝑝𝑘(𝑥)). Then,

𝛿𝑘(𝑥) = −
1

2𝜎𝑘
(
𝑥 − 𝜇𝑘

)2 + ln(𝜋𝑘) + ln
(

1√
2𝜋𝜎𝑘

)
.

We seek to find the 𝑘 that solves the optimization problem

argmax
𝑘∈{1,···,𝐾}

𝛿𝑘(𝑥).

This algorithm is called Quadratic Discriminant Analysis (QDA), namely because 𝛿𝑘(𝑥)
is quadratic in 𝑥. QDA uses the assumption that the variance for each class is different. If
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we assume a constant variance across all 𝐾 classes, then we can eliminate some terms. So,
under the assumption 𝜎2

1 = 𝜎2
2 = · · · = 𝜎2

𝑘
= 𝜎2:

argmax
𝑘∈{1,···,𝐾}

− 1
2𝜎2 (𝑥 − 𝜇𝑘)

2 + ln(𝜋𝑘) = −
𝑥2

𝜎2 +
2𝑥𝜇𝑘
𝜎2 −

𝜇2
𝑘

𝜎2 + ln(𝜋𝑘).

Note that the first term does not depend on 𝑘, so we treat it as a constant and drop it.
Therefore, we have

argmax
𝑘∈{1,···,𝐾}

2𝑥𝜇𝑘
𝜎2 −

𝜇2
𝑘

𝜎2 + ln(𝜋𝑘).

This form is called Linear Discriminant Analysis (LDA) because it is linear in 𝑥.
Therefore, LDA is a reduced form of QDA if we want to make the simplifying assumption
of constant variance.

We can shift perspectives into rewriting both forms using matrices. For simplicity, we
omit the derivation and write its closed-form expression. Let 𝜇𝑘 be the sample mean
vector in the 𝑘-th class, 𝑋 be the feature vector in class 𝑘, and Σ𝑘 be the covariance matrix
of the 𝑘-th class. Then,

�̂�
(
𝑋 =
−→𝑥 |𝑌 = 𝑘

)
=

1√
2𝜋|Σ̂𝑘|0.5

𝑒−
1
2 (𝑥−�̂�𝑘 )𝑇Σ̂−1

𝑘
(𝑥−�̂�𝑘 ).

The closed form optimization function is (at −→𝑥 =
−→𝑥 0):

argmax
𝑘

ln(�̂�𝑘) −
1
2 ln

��Σ̂𝑘 �� + 1
2
−→𝑥 𝑇0 Σ̂−1

𝑘
−→𝑥 0 + −→𝑥 𝑇0 Σ̂−1

𝑘
−→𝜇 𝑘 −

1
2
−→𝜇 𝑇

𝑘
Σ̂−1
𝑘
−→𝜇 𝑘 .

Recall that −→𝑥 𝑇0 Σ̂−1
𝑘
−→𝑥 0 is a quadratic form, which is therefore the QDA in vector/matrix

form. In LDA, the second and third terms will cancel since we assume that the covariance
matrix Σ is uniform across all classes and so those terms will no longer depend on 𝑘.
Here we think of the covariance matrix as how strong one feature is correlated to another
(non-diagonal elements) and the spread of each feature (variance). For QDA we assume
that the correlation between features between classes and for LDA we assume that they
are the same between classes.

Some closing thoughts about LDA vs. QDA:
• If we are concerned about the number of parameters used, then LDA is better, for QDA

requires roughly 𝑘 times the number of parameters compared to LDA.
• QDA is more flexible than LDA. If we think about the assumptions, LDA requires us to

assume constant variance whereas QDA does not. As always, flexible models are more
likely to overfit test data, so we once again need to determine the true pattern of the
data.
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• QDA is better than LDA if we have a large sample size and relatively small number of
predictors. The approximation for each covariance matrix will smooth out and
generally be more precise (lower variance). LDA will have more trouble here because it
wants to find a uniform covariance matrix across all classes, which will be harder to
estimate with the large sample size. If the true covariance matrices of each class differ
significantly, then there will be large bias for LDA’s uniform covariance matrix
assumption. LDA ultimately forces to treat every class as having the same spread and
relationship relative to each other. In low dimensional data, LDA becomes too
restrained.

Brief Aside: using Bayes’ Theorem and notation 𝜋𝑘 , 𝑓𝑘 , 𝑝𝑘 , the Gaussian Naive Bayes is
written as

𝑝𝑘(𝑥) =
𝜋𝑘 𝑓𝑘1(𝑥1) · · · 𝑓𝑘𝑝 (𝑥𝑝)∑𝑘
𝑙=1 𝜋𝑙 𝑓𝑙1(𝑥1) · · · 𝑓𝑙𝑝 (𝑥𝑝)

.

For example, if we wanted to determine the number of parameters required for Naive
Bayes, we would need 𝑘 priors plus 2𝑝𝑘 since 𝑓𝑘𝑖 has 𝑝 parameters and 𝑘 classes.

2.3 Decision Boundaries

Simply put, decision boundaries is what really defines classification models; it is how we
separate classes from each other. In general, describing decision boundaries for
LDA/QDA are straightforward:
• The decision boundaries in LDA are linear. That is to say, the boundaries separating

each class are straight lines.
• The decision boundaries in QDA are quadratic. That is to say, the boundaries

separating each class are parabolic.
• The decision boundaries in Naive Bayes are, in most cases, moderately non-linear.
• The decision boundaries in logistic regression are the same as LDA, but they are

computed in different ways.
If the decision boundary is complex (in which it cannot be generated by the above
algorithms), then we resort to a non-parametric method. We will look at kNN in
particular:
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Suppose we want to put −→𝑥 into a class using its two nearest neighbors −→𝑥1 and −→𝑥3. We
want to find the region that is closest to both neighbors, which in this case is the region
shaded in blue. Therefore, we would put −→𝑥 into the blue class over the red class.

The regions are generated by splitting the plane in half between pair of observations.
While the above example doesn’t fully live up to that, the intuition is hopefully there.
Another example exhibits the difference of predicted region depending on number of
neighbors used (1 or 2).
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Example 2.3. Suppose we want to perform Linear Discriminant Analysis with two pre-
dictors and one output which falls into two classes 𝑦 = 0 and 𝑦 = 1. The training data
consists of 6 points (𝑥1 , 𝑥2 , 𝑦) given by

{(−2,−2, 0), (−1, 2, 0), (−3, 0, 0), (2,−2, 1), (1, 2, 1), (3, 0, 1)}

For example, the input (1, 2) corresponds to 1. What is the decision boundary in the
𝑥-plane?

The decision boundary is the center line 𝑥 between the mean vector −→𝜇 of each class, or
more precisely:

||𝑥 − �̂�0|| = ||𝑥 − �̂�1||
We have that

−̂→𝜇 0 =

(
−2
0

)
and −̂→𝜇 1 =

(
2
0

)
The center line is the 𝑥2-axis; any point to the left yields 0 and to the right yields 1.

This holds if the covariance matrix is diagonal, or 𝜎12 = 𝜎21 = 0.

𝜎12 = 𝜎21 =
1

𝑛 − 1

𝑛∑
𝑖=1
(𝑥1𝑖 − 𝜇1)(𝑥2𝑖 − 𝜇2) = 0

=
1

𝑛 − 1

𝑛∑
𝑖=1
(𝑥1𝑖 − 0)(𝑥2𝑖 − 0) = 0

Where 𝜇1 and 𝜇2 are the average of all 𝑥1, 𝑥2 values in the dataset.

11
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Example 2.4. Imagine we want to perform KNN regression with 𝐾 = 2 using a training
dataset with just four observations and just one predictor. The training data consists of
the four points

{(1, 4), (2, 0), (6,−2), (8,−4)}
(i.e. the input 1 corresponds to the output 4). Sketch a graph of what the corresponding
prediction function will look like. Do not worry about boundary points (when an input is
equally far from two different points)

• When 𝑥 < 3.5, the two closest neighbors are 𝑥 = 1 and 𝑥 = 2. Therefore, we take the
average of their 𝑦’s, which is 2.

• When 3.5 < 𝑥 < 5, the two closest neighbors are 𝑥 = 2 and 𝑥 = 6. The average of their
𝑦’s is �̂� = −1.

• When 𝑥 > 5, the two closest neighbors are 𝑥 = 6 and 𝑥 = 8. The average of their 𝑦’s is
�̂� = −3

12



Ryan Gomberg Math 178 Notes (Mathematical Machine Learning) Page 13 of 48

3 Resampling Methods

The process we have streamlined thus far has been to build a model, train it on existing
data (choose objective function and optimize), and then test it on new data. So far, we
have assumed that one set of training and test data is sufficient. What if we want, given a
fixed amount of data, many sets of train and test data? We refer to this as resampling, or
generating different samples of training data to get a better understanding of how our
models hold up. For example, if we have 100 observations, we could generate 20 sets of
(90 training data, 10 test data) models, and see how they compare to each other. Recall
from earlier that, given a model 𝑓 (𝑥)with predicted value and observed value, 𝑓 (𝑥0), 𝑦,

Test Error = 𝐸𝜀, train
[
𝑦 − 𝑓 (𝑥0)

]
We applied this to a single set of test data. Partitioning our training just once is wasteful;
we are not using the available data to its maximum capacity! This is the motivation for
resampling methods.
There are two general approaches to resampling:
• Pretend there is no separated test data. Instead, choose different training and test sets,

out of the entire data, in each sample.
• Ignore the initial set of test. Within the training data, partition into new subsets of

training and test data. Then, validate on the initial set of test data
Validating our data really means that we want to test the performance of our model,
generated by the subsets of training data, on the subsets of test data before using the
“real" test data. This is a way of using observations as a preliminary test before
generalizing a model to unseen data.
In the following sections, we will discuss three methods of resampling, which approach
they fall into, and dive into their cost-benefit trade-off.

3.1 Leave One Out Cross Validation

Suppose we are given a dataset with 𝑁 observations. The Leave One Out Cross
Validation (LOOCV) method constructs 𝑁 folds, or samples, each containing 𝑁 − 1
training data. The remaining observation is the test data. The accuracy is measured by
averaging the performance of the 𝑁 models.

13
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The blue rectangles indicate the set of data we are training, and the red rectangle is the
singular test data.
With the large amount (𝑁) of models generated by LOOCV, the accuracy will be more
promising compared to other methods because we are using all 𝑁 observations in each
fold, utilizing the data to its full potential. The model works well in practice; however,
the computational cost grows significantly as the number of observations increases.
Therefore, this method is typically avoided with large datasets and used for when 𝑁 is
small.

3.2 K-Fold Cross Validation

𝐾-Fold validation relaxes the restrictions imposed on partitioning data. Instead of
generating 𝑁 models, we partition the training data into 𝑘 < 𝑁 groups. For each group,
or fold, we train on 𝑘 − 1 groups and test on the remaining group. This is performed 𝑘

times to ensure each group is the test data one time.

14
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The figure performs a 5-fold cross validation (𝑘 = 5). First, we partition our entire dataset
into training and test data, which will be kept aside for now. For the time being, we
operate on the training data by splitting it into 5 equal folds. In the first iteration, we let
folds 2−5 be the training data and then test the new-found model on fold 1. We iterate
four more times until each fold has been used as test data. Then, we compute the average
performance across the 5 folds (𝑎). Then, we generate a model on the entire training set
(combining all 5 folds) and then test on the data we set aside earlier.

Typically, to lessen computational cost, 𝑘 = 5 or 𝑘 = 10 are reasonable choices.

𝐾-Fold Cross Validation is a great resampling method; it efficiently takes advantage of
training data before using any test data. Ultimately, we will get an idea of our model will
perform before applying it on new, unseen data.

3.3 Bootstrapping

Compared to the other two approaches, bootstrapping takes on a more general
philosophy. We generate 𝑘 subsets of our observation data with replacement, each
containing 𝑛 data points, and apply it on unseen data.

Suppose our data has 25 observations. The bootstrapping method applied here takes 3
subsets of observation data, each containing 20 data points. We would then obtain 3
unique models.

Bootstrapping is incredibly powerful in repeated sampling. Of course, we will obtain a
higher accuracy with more samples. 3 is way too small; generally 500-1000 of samples are

15
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more reasonable with larger data. This, in turn, will increase accuracy but also increase
the computational cost. Overall, bootstrapping gives us some intuition on the variance
between splits and the uncertainty of accuracy.
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4 Neural Networks, Deep Learning

If you have ever studied the brain, we describe its functions as one, complex, entangled
web. It is comprised of billions of neurons which pass information to neurotransmitters.
These so-called messengers “light up” when they are activated by a neuron’s incoming
signal and pass on the new information to other neurons. This process is repeated until a
terminal branch is reached, which then processes the information to different parts of the
body. New information then gets sent back to the brain, creating a feedback loop.
Ultimately, it is only with a neural network that we can perform simple tasks (i.e.
movement, sensations, processing information).

4.1 Overview of Neural Networks

Neural networks in machine learning, fundamentally, are no different from our how
brain works. The overarching idea is to initialize a set of neurons and send them through
activation functions. These functions get “fired" and transmit new information to the next
activation function. The process repeats until every set of activation functions has been
processed; the final set our neurons is our output, or the terminal branch in this sense.
Depending on our objective, the network’s output may be a single binary value, as in
classification problems, or multiple continuous values.

The input layer consists of the set of 𝑃 observations 𝑋 = (𝑋1 , 𝑋2 , · · ·, 𝑋𝑝), each assigned to
a neuron. Additionally, each neuron is given a weight, which describes how strong of a
connection it has between other neurons. After the input layer, neurons then get passed
into hidden layers, each containing activation functions. These functions are non-linear
transformations of our input neurons and generally are not fixed in advance, but instead
learned as we train the network. Hidden layers can be thought of “working behind the
scenes," or as the intermediate steps of the neural network. Finally, the output layer uses
the most recent activation of neurons as its input, resulting in a function 𝑓 (𝑋). The
diagram shown below summarizes the structure of a neural network, containing the
input layer, one hidden layer, and output layer.
This is known as a single layer neuron
network, namely because it only has one
hidden layer. We take in two inputs
𝑋1 , 𝑋2. The hidden layer computes ac-
tivations (more on this later) on 3 neu-
rons 𝐴𝑘 = ℎ𝑘(𝑥). The arrows indicate the
feeding of the input neurons into the 𝐾
neurons in the hidden layer, also known
as the weights.
Then, the neurons from the hidden layer produce the output 𝑓 (𝑋). Additionally, the
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weights are colored red and blue to indicate correlation (negative and positive) between
neurons. This will be further discussed in the gradient descent and backpropagation
sections. We can model this the neural network by the function

𝑓 (𝑋) = 𝛽0 +
𝐾∑
𝑘=1

𝛽𝑘ℎ𝑘(𝑋) = 𝛽0 +
𝐾∑
𝑘=1

𝛽𝑘 𝑔
©«𝑤𝑘0 +

𝑝∑
𝑗=1

𝑤𝑘 𝑗𝑋𝑗
ª®¬

𝑓 (𝑋) is written here as a culmination of two steps. The 𝐾 activations for 𝑘 = 1, · · ·, 𝐾 are
computed as functions of the input neurons:

𝐴𝑘 = ℎ𝑘(𝑋) = 𝑔
©«𝑤𝑘0 +

𝑝∑
𝑗=1

𝑤𝑘 𝑗𝑋𝑗
ª®¬

𝑔(𝑧) is a non-linear activation function and operates on the weights 𝑤𝑘 𝑗 and inputs 𝑋𝑗 .
The next section dives into common activation functions. 𝛽𝑘 is known as a bias, which
allows the neuron to adjust its output without relying just on the weights, shifting the
activation function and increasing flexibility.

Example 4.1. Let 𝑋1 , 𝑋2 be two input neurons. The hidden layer also has two neurons
𝐴1 , 𝐴2 corresponding to ℎ1(𝑋), ℎ2(𝑋), and 𝑔(𝑧) = 𝑧2. The weights and biases are given by

𝛽0 = 0, 𝛽1 =
1
4 , 𝛽2 = −1

4

𝑤10 = 0, 𝑤11 = 1, 𝑤12 = 1

𝑤20 = 0, 𝑤21 = 1, 𝑤22 = −1

What is 𝑓 (𝑋)with respect to 𝑋1 , 𝑋2?

Using the expressions for the activation functions,

𝐴1 = ℎ1(𝑋) = (0 + 𝑋1 + 𝑋2)2 , 𝐴2 = ℎ2(𝑋) = (0 + 𝑋1 − 𝑋2)2

Then, plug into 𝑓 (𝑋):

𝑓 (𝑋) = 0 + 1
4 (𝑋1 + 𝑋2)2 −

1
4 (𝑋1 − 𝑋2)2 = 𝑋1𝑋2

This is known as an interaction term, often analyzed in regression models. In some cases,
we would not choose 𝑔(𝑧) to be quadratic, mainly because there is a higher change to overfit
and because 𝑔′(𝑧) is unbounded, which is a problem when we talk about gradient descent.
The next section aims to introduce common activation functions in neural networks.
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4.2 Activation Functions

The core of neural networks are the transformations applied to each neuron. Without
activation functions, we have cannot reliably train a model with flexibility and expect
high accuracy on test data. Below is an overview of common activation functions; we will
provide a more detailed description for the starred ones.

• Identity or linear: 𝑔(𝑧) = 𝑧 or 𝑔(𝑧) = 𝑎𝑧 + 𝑏, 𝑎, 𝑏 ∈ R.
• Polynomial: 𝑔(𝑧) = 𝑎𝑛𝑧

𝑛 + 𝑎𝑛−1𝑧
𝑛−1 + · · · + 𝑎0 , 𝑎𝑖 ∈ R.

• Maxpool: 𝑔(𝑧) = max(𝑧1 , · · ·, 𝑧𝑛), 𝑧 ∈ R𝑛 .
• **Linear Threshold (Heaviside)
• **ReLU (Rectified Linear Unit)
• **Sigmoid
• **Softmax

Heaviside Function

The heaviside function passes an input into a simple if-else statement and outputs a
piecewise function.

𝑔(𝑧) =
{

1 if 𝑧 ≥ 0
0 otherwise

We also compute the gradient

𝜕𝑔

𝜕𝑧
= 0.

The gradients will be useful to have for gradient descent and backpropagation. The
heaviside function can be great for a simple neural network if we want a binary output,
implying that the neuron either lights up or it doesn’t. However, we will run into a
problem when we talk about backpropagation. Namely, we want a nonzero and smooth
gradient and, obviously, this is not satisfied by the heaviside function.

We say a neuron is active, or firing, when the activation function returns a nonzero value
and inactive when the activation function returns zero.

ReLU

The ReLU takes on a slight modification from the heaviside function if 𝑧 ≥ 0. ReLU is
known for its low computational cost and its sparsity−the proportion of times where the
neurons output zero. However, if too many neurons output zero, then learning is
prohibited and is formerly known as the dying ReLU problem.

ReLU is great as a hidden layer activation but not an output layer activation because it
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only produces positive values.

𝑔(𝑧) =
{
𝑧 if 𝑧 ≥ 0
0 otherwise

𝜕𝑔

𝜕𝑧
=

{
1 if 𝑧 ≥ 0
0 otherwise

Sigmoid Function

In Chapter 2, we introduced logistic regression models to measure probability. The
sigmoid function is actually just the same model!

𝑔(𝑧) = 1
1 + 𝑒−𝑧

𝜕𝑔

𝜕𝑧
= 𝑔(𝑧)(1 − 𝑔(𝑧))

Sigmoid functions tend to be the desired output layer activation for binary classification
models because they range from (0, 1). They can be great in hidden layer activations with
small changes in inputs because the gradient is smooth and continuous for optimization.
However, that’s where the benefits end. If 𝑧 grows too large in magnitude, we run into
the vanishing gradient problem, where the gradient 𝜕𝑔

𝜕𝑧 ≈ 0, significantly slowing down the
learning process.

Aside: Recall that a function is pointwise continuous for a sequence of functions on
{𝑔𝑛(𝑧)}∞𝑛=1 if lim

𝑛→∞
𝑔𝑛(𝑧) = 𝑔(𝑧) for every given 𝑧 ∈ 𝑍. Suppose we constructed a sequence

of sigmoid functions

𝑔𝑛(𝑧) =
1

1 + 𝑒−𝑛𝑧
and took the limit lim

𝑛→∞
𝑔𝑛(𝑧)? We must consider two cases: 𝑧 < 0 and 𝑧 > 0 since they will

determine the sign of −𝑛𝑧 and behavior of 𝑔𝑛 .

lim
𝑛→∞

𝑔𝑛(𝑧) =


0 if 𝑧 < 0
1
2 if 𝑧 = 0
1 if 𝑧 > 0

=⇒ 𝑔𝑛(𝑧) =
{

0 if 𝑧 < 0
1 if 𝑧 > 0
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This is the heaviside function (with the exception of 𝑧 = 0)!

Note, however, that the convergence for 𝑔𝑛(𝑧) is not uniform. This is to say that there is no
“overall speed of convergence."

Softmax Function

The softmax function is simply an extension of the sigmoid function to multiple
dimensions. Given a vector of neuron inputs 𝑧,

𝑔(𝑧) = 𝑒𝑧𝑖∑𝐾
𝑗=1 𝑒

𝑧 𝑗
.

The output represents the probability values for each class. Akin to the sigmoid function,
the softmax function is also used in the output layer in a multi-class classification
problem, following a multinomial distribution.

Example 4.2. Suppose we want to determine whether a neural network is most likely to
classify an image as either a dog, cat, or a bird. The given input 𝑧 = [𝑧1 , 𝑧2 , 𝑧3] corresponds
to the raw scores of a dog (𝑧1), cat (𝑧2), and bird (𝑧3). If 𝑧 = [2.3, 2.1, 0.6], what will the
neural network output return?

The output vector (probabilities) [𝑔(𝑧1), 𝑔(𝑧2), 𝑔(𝑧3)] is generated by inputting each 𝑧𝑖 into
the softmax function:

𝑔(𝑧1) =
𝑒2.3

𝑒2.3 + 𝑒2.1 + 𝑒0.6 ≈ 0.4996, 𝑔(𝑧2) =
𝑒2.1

𝑒2.3 + 𝑒2.1 + 𝑒0.6 ≈ 0.4091

𝑔(𝑧3) =
𝑒0.6

𝑒2.3 + 𝑒2.1 + 𝑒0.6 ≈ 0.0913

The output of the neural network is [0.4996, 0.4091, 0.0913] and it will return “dog" because
it has the largest probability.

Applications of Activation Functions

Before proceeding, we summarize some important applications of neural networks for
the ReLU, sigmoid, and softmax functions.

• ReLU: Image processing in convolutional neural networks. They find local features in
an image, such as edges and small shapes. This allows the the network to learn
complex patterns in images (for instance, a zebra’s stripes).

• Sigmoid: Binary classification problems such as processing emails (spam vs. not
spam), medical diagnoses (positive or negative), and fraud detection (real or
illegitimate transaction).
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• Softmax: Multi-class classification problems such as image classification (see previous
example), text categorization and sequential word/vocabulary probability (ChatGPT
does this), and handwriting recognition (the MNIST dataset is a very common
example).

These activations break linearity, namely applying non-linear transformations to each
neuron and producing a nonlinear decision boundary in the end.

4.3 Boolean Neural Networks

This section is designed to apply neural networks in simple logic problems. Before we
begin, we let 𝑧𝑘 be the linear combination of weights plus the bias in the 𝑘-th neuron, as
described in Section 4.1:

𝑧𝑘 = 𝛽𝑘 +
𝑝∑
𝑗=1

𝑤𝑘 𝑗𝑋𝑗

AND Boolean

Basic True/False boolean problems are often summarized in a truth table. The
AND(𝑋1 , 𝑋2) boolean returns true if two predictors return true, and false otherwise. The
truth table is therefore

𝑋1 𝑋2 AND(𝑋1 , 𝑋2)
T T T
T F F
F T F
F F F

Let 0 = False and 1 = True. Suppose we wanted to construct a decision boundary for the
set of points

{(0, 0)𝑇 , (0, 1)𝑇 , (1, 0)𝑇 , (1, 1)𝑇}
using a neural network, containing one hidden layer.

Here we are tasked to design a neural net-
work with a set of weights and biases in
the hidden layer. We can actually con-
struct a linear decision boundary, which
means we do not need any special acti-
vation functions in the hidden layer! We
can apply a simple linear transformation.
Let −→𝑤 be the set of weights [𝑤1 , 𝑤2] given
by −→𝑤 = [1, 1]. Choose the bias 𝛽 = −3

2 .
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Then, 𝑧 = −→𝑤 · −→𝑋 + 𝛽 = 𝑋1 +𝑋2 − 3
2 . The output layer can contain the heaviside function as

its activation 𝑔(𝑧). Now, we verify that each of the four points is correctly classified:

(0, 0)𝑇 : 𝑧 = −3
2 , 𝑔(𝑧) = 0 (0, 1)𝑇 : 𝑧 = −1

2 , 𝑔(𝑧) = 0

(1, 0)𝑇 : 𝑧 = −1
2 , 𝑔(𝑧) = 0 (1, 1)𝑇 : 𝑧 = 1

2 , 𝑔(𝑧) = 1

OR Boolean

This time, the OR(𝑋1 , 𝑋2) boolean returns true if at least one of 𝑋1 , 𝑋2 is true. The truth
table is now:

𝑋1 𝑋2 OR(𝑋1 , 𝑋2)
T T T
T F T
F T T
F F F

Suppose we wanted to construct a decision boundary for the set of points

{(0, 0)𝑇 , (0, 1)𝑇 , (1, 0)𝑇 , (1, 1)𝑇}
using a neural network, containing one hidden layer.

Similarly, we need only a linear decision
boundary to classify these points. We can
keep −→𝑤 = [1, 1] from the previous exam-
ple, but this time, let 𝛽 = − 1

2 . The output
layer will use the heaviside function as its
activation. One can verify that the four
points are appropriately assigned to their
output.

XOR Boolean

The XOR(𝑋1 , 𝑋2) booelan returns true if only one of 𝑋1 , 𝑋2 is true. The truth table is now:
𝑋1 𝑋2 XOR(𝑋1 , 𝑋2)
T T F
T F T
F T T
F F F
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Once again, let us design a neural network that successfully classifies the four points

{(0, 0)𝑇 , (0, 1)𝑇 , (1, 0)𝑇 , (1, 1)𝑇}.

This time, we observe that a linear de-
cision boundary is impossible. A line
cannot divide the plane without gener-
ating some sort of false positive. This is
to say that generating a region that con-
tains both (0, 1) and (1, 0) will also contain
(0, 0) or (1, 1).

We consider a neural network with an input layer (2 neurons), hidden layer using ReLU
(2 neurons), and output layer using the sigmoid function (1 neuron).
Let 𝐴(1) = 𝑔1(𝑧) = max(0,𝑊1𝑋 + 𝛽1), where𝑊1 and 𝛽1 are the weights and biases given by

𝑊1 =

(
−1 1
1 −1

)
, 𝛽1 =

(
0
0

)
Let 𝑦 = 𝑔2(𝑊2𝐴

(1) + 𝛽2), where𝑊2 and 𝛽2 are the weights and bias given by

𝑊2 =
(
1 1

)
𝛽2 = −1

2

and 𝑔2(𝑧) is the sigmoid function. Then, for each of the following four points:

(0, 0)𝑇 =⇒ 𝐴(1) = 𝑔1(𝑧) = (0 0)𝑇 =⇒ 𝑦 = 𝑔2

(
−1

2

)
≈ 0.38→ False.

(0, 1)𝑇 =⇒ 𝐴(1) = 𝑔1(𝑧) = (0 1)𝑇 =⇒ 𝑦 = 𝑔2

(
1
2

)
≈ 0.62→ True.

(1, 0)𝑇 =⇒ 𝐴(1) = 𝑔1(𝑧) = (1 0)𝑇 =⇒ 𝑦 = 𝑔2

(
1
2

)
≈ 0.62→ True.

(1, 1)𝑇 =⇒ 𝐴(1) = 𝑔1(𝑧) = (0 0)𝑇 =⇒ 𝑦 = 𝑔2

(
−1

2

)
≈ 0.38→ False.

Here 𝐴(1) contains two hidden layer activations (neurons)−𝐴(1)1 and 𝐴(1)2 −generated by
𝑊1 , 𝛽1. The following diagram summarizes the neural network we just created!
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The superscripts (1), (2) correspond to which layer we are sending the weights to. The
weights 𝑤(1)11 , 𝑤

(1)
12 are the weights for 𝑋1 and 𝑤(1)21 , 𝑤

(2)
22 are the weights for 𝑋2 in the first

hidden layer. These are the elements stored in𝑊1. Likewise, 𝑤(2)1 , 𝑤
(2)
2 are the weights for

𝐴1 , 𝐴2 in the output layer, stored in the vector𝑊2. There is one bias (or vector of biases)
that connect to each activation.

For this neural network, there are [(2 weights)(2 input neurons) + 2 biases] + [(2 hidden
layer neurons)(1 weight) + 1 bias] = 9 total parameters.

4.4 Gradient Descent and Backpropagation

The previous section gave us an idea of how to design small neural networks with 100%
accuracy. However, fitting large neural networks is somewhat complex. We provide a
brief overview of the steps:

• Run your model with an initial set of weights, biases, and activation functions. This is
what we did in the previous section, and is known as forward feeding−information
flows from the input layer and eventually into the output layer.

• Compute the aggregate error between predicted and actual responses using a loss
function.

• Run back through the neural network, starting from the output layer, adjusting
weights that will minimize the squared error. This is backpropagation.

We will apply gradient descent−an iterative method−to minimize our loss function.
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Forward Feeding

For simplicity, we will use a single layer neural network. Forward feeding a regression
model 𝑓 (𝑥) is simply the output

𝑓−→𝑤 (
−→𝑥𝑖 ) = 𝛽0 +

𝐾∑
𝑘=1

𝛽𝑘 𝑔
©«𝑤𝑘0 +

𝑝∑
𝑗=1

𝑤𝑘 𝑗𝑥𝑖 𝑗
ª®¬

where 𝑥𝑖 is the 𝑖-th observation and 𝐾 is the number of neurons in the hidden layer. For a
classification model, we can use the softmax function

𝑓𝑖(𝑥) = 𝑃(𝑦 = 𝑖 | 𝑋 = 𝑥) = 𝑒𝑧𝑖∑𝐾
𝑗=1 𝑒

𝑧 𝑗

as our forward feeding model, where 𝑧 is the linear combination of weights and biases in
each class.

Loss Functions

As mentioned earlier, loss functions measure the total error between our output and what
the actual output is. We will denote the loss function as a function of our weights 𝐸(−→𝑤 ).
For regression models, the loss function is often the mean squared error (MSE):

𝐸(−→𝑤 ) = 1
𝑛

𝑛∑
𝑖=1

(
𝑓−→𝑤 (
−→𝑥𝑖 ) − 𝑦𝑖

)2

The optimization problem to be solved is one that finds a −→𝑤 minimizing 𝐸.

For classification problems, the choice for 𝐸 is one that maximizes 𝑃(all 𝑦𝑖 | all 𝑋𝑖).
Mathematically, the optimization problem can be expressed as solving

argmax
−→𝑤

∏
𝑗=1

∏
𝑦𝑖=𝑗

𝑃(𝑗|𝑋0) =
𝑛∏
𝑖=1

𝑃(𝑦𝑖|𝑋𝑖) = argmax
−→𝑤

log ©«
∏
𝑗=1

∏
𝑦𝑖=𝑗

𝑃(𝑗|𝑋0)ª®¬
= argmax

−→𝑤

∑
𝑗=1

∑
𝑖:𝑦𝑖=𝑗

log 𝑓𝑗(𝑥 𝑗)

This can be translated to the minimum by putting a negative sign:

= 𝐸
(−→𝑤 )

= argmin
−→𝑤

−
∑
𝑗=1

∑
𝑖:𝑦𝑖=𝑗

log 𝑓𝑗(𝑥 𝑗)

The loss function for a classification problem is known as the cross-entropy loss function.
Recall that 𝑓𝑗(𝑥 𝑗) is the softmax function.
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Gradient Descent

Recall that the derivative of 𝐸 along a direction
−→
𝑉 is denoted by ∇−→

𝑉
𝐸, or the gradient. Let

𝜂 > 0 be the learning rate such that the change in 𝐸 is modeled by

𝐸
(−→𝑤 + 𝜂−→𝑉 )

− 𝐸
(−→𝑤 )
≈

(
∇𝐸(−→𝑤 ) · −→𝑉

)
𝜂

Here −→𝑤 + 𝜂−→𝑉 is the small change in −→𝑤 while moving in the direction of
−→
𝑉 , and so the

change in 𝐸 also moves in the direction of
−→
𝑉 . The equation is derived from the definition

of a directional derivative

lim
𝜂→0

𝐸
(−→𝑤 + 𝜂−→𝑉 )

− 𝐸
(−→𝑤 )

𝜂
= ∇𝐸(−→𝑤 ) · −→𝑉

Therefore, the best direction to minimize 𝐸 is the negative gradient direction:

−→
𝑉 = − ∇𝐸|∇𝐸| .

The procedure for gradient descent, in practice, is pretty straightforward:

1. Initialize a reasonable, random set of weights −→𝑤 .

2. Compute ∇𝐸(−→𝑤 ).
3. Set −→𝑤 =

−→𝑤 − 𝜂∇𝐸(−→𝑤 ).
4. Repeat steps 1-3 until the change in loss function goes below a certain threshold−until

you cannot go down any further−or when you go over the number of iterations you
have set.

Generally, we set 𝜂, the hyperparameter, to a small number (i.e. 10−2) and the threshold
to be a difference of less than 10−4 or 10−5. Shown below are examples of gradient
descent in 2D and 3D cases.
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Some remarks about gradient descent:

• We compute ∇𝐸 through backpropagation.

• If we make 𝜂 too large, then we may overshoot and have divergence. If 𝜂 is too small,
then the computational cost grows larger.
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• We cannot say that the minimum we find is indeed the global minimum. It will be a
local minimum at worst, but is there a way to fall into the global minimum?

The answer to the last item uses stochastic gradient descent, where we try to “force" our
weights out of a local min and into another, seeing if it is further down than the one we
previously found. We add randomness/diffusion to our gradient descent model:

−→𝑤 =
−→𝑤 − 𝜂∇𝐸(−→𝑤 )︸   ︷︷   ︸

drift

+ 𝒢︸︷︷︸
diffusion

, 𝒢 ∼ Gauss(0, 𝜎)

Here an initial choice of −→𝑤 is not too important; however, we should randomize it to
some extent so it is not uniform.

Backpropagation

So far, we have discussed forward feeding, our loss functions, and gradient descent. The
final step in finalizing our neural network is backpropagating through our network,
adjusting the weights that truly minimize our loss function 𝐸.

The computation for backpropagation is quite heavy, so we will stick to backpropagating
a regression neural network which uses MSE as the loss function. Also, we will assume a
single neuron in each layer.

Think about how 𝐸0 is computed. We combine the activation from the previous layer and
the weights and bias in the current layer to obtain 𝑧(𝐿). Then, plug in 𝑧(𝐿) into the
activation 𝐴(𝐿). We use the difference between 𝐴(𝐿) and 𝑦 to get the loss 𝐸0! Obviously,
𝐴(𝐿−1) is inspired by the previous activation, weights 𝑤(𝐿−1), bias 𝛽(𝐿−1), and so forth, but
let us only consider the elements in the diagram.

The idea to determine the sensitivity of 𝐸0 with small perturbations in 𝑤(𝐿). Or, more
precisely,

𝜕𝐸0

𝜕𝑤(𝐿)

We note that a small perturbation in 𝑤(𝐿) will cause some change in 𝑧(𝐿), or 𝜕𝑧(𝐿), which
in turn, causes a change in 𝐴(𝐿) (𝜕𝐴(𝐿)), and ultimately influencing 𝐸0 (𝜕𝐸0)! The change
in loss can ultimately be represented as a product of ratios as we go down the sequence
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𝜕𝐸0

𝜕𝑤(𝐿)
=

𝜕𝑧(𝐿)

𝜕𝑤(𝐿)
𝜕𝐴(𝐿)

𝜕𝑧(𝐿)
𝜕𝐸0

𝜕𝐴(𝐿)

This is the chain rule! Now, we compute the relevant derivatives. As we mentioned
earlier, we are using the loss function for a regression problem which is the mean
squared error. So, 𝐸0 =

(
𝐴(𝐿) − 𝑦

)2 implies that

𝜕𝐸0

𝜕𝐴(𝐿)
= 2

(
𝐴(𝐿) − 𝑦

)
We express 𝐴(𝐿) as 𝐴(𝐿) = 𝑔

(
𝑧(𝐿)

)
, so

𝜕𝐴(𝐿)

𝜕𝑧(𝐿)
= 𝑔′

(
𝑧(𝐿)

)
Lastly, 𝜕𝑧(𝐿) = 𝜕𝑤(𝐿)𝐴(𝐿−1) + 𝛽(𝐿), so

𝜕𝑧(𝐿)

𝜕𝑤(𝐿)
= 𝐴(𝐿−1)

Therefore, the change in the loss with the weights is the product

𝜕𝐸0

𝜕𝑤(𝐿)
= 2𝐴(𝐿−1)𝑔′

(
𝑧(𝐿)

) (
𝐴(𝐿) − 𝑦

)
.

As given by the diagram, this is just one iteration of backpropagation. We compute the
change in loss function 𝜕𝐸0 over each training example. If there are 𝑛 observations, then
the aggregate change in loss is

𝜕𝐸

𝜕𝑤(𝐿)
=

1
𝑛

𝑛−1∑
𝑘=0

𝜕𝐸𝑘
𝜕𝑤(𝐿)

.

What we derived here is one half of ∇𝜕𝐸0. Recall that

∇𝜕𝐸0 =

©«

𝜕𝐸
𝜕𝑤(1)
𝜕𝐸
𝜕𝛽(1)

...
𝜕𝐸

𝜕𝑤(𝐿)
𝜕𝐸
𝜕𝛽(𝐿)

ª®®®®®®®¬
We also needed to find the change in loss with respect to the biases. Just apply the chain
rule again:
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𝜕𝐸0

𝜕𝛽(𝐿)
=

𝜕𝑧(𝐿)

𝜕𝛽(𝐿)
𝜕𝐴(𝐿)

𝜕𝑧(𝐿)
𝜕𝐸0

𝜕𝐴(𝐿)

Since 𝜕𝑧(𝐿)

𝜕𝛽(𝐿)
= 1,

𝜕𝐸0

𝜕𝛽(𝐿)
= 2𝑔′

(
𝑧(𝐿)

) (
𝐴(𝐿) − 𝑦

)
.

Similarly, we can find 𝜕𝐸0 with respect to the previous activation function.
We would have the expression

𝜕𝐸0

𝜕𝐴(𝐿−1) =
𝜕𝑧(𝐿)

𝜕𝐴(𝐿−1)
𝜕𝐴(𝐿)

𝜕𝑧(𝐿)
𝜕𝐸0

𝜕𝐴(𝐿)

The derivative 𝜕𝑧(𝐿)

𝜕𝐴(𝐿−1) = 𝑤
(𝐿), which gives us

𝜕𝐸0

𝜕𝐴(𝐿−1) = 2𝑤(𝐿)𝑔′
(
𝑧(𝐿)

) (
𝐴(𝐿) − 𝑦

)
.

Now, we can just iterate the same chain rule idea backwards to see how sensitive the loss
function is to previous weights and biases. It is one long-winded expression of the chain
rule, multiplying a lot of ratios!

𝜕𝐸0

𝜕𝑤(1)
=

𝜕𝑧(𝐿)

𝜕𝑤(𝐿)
𝜕𝐴(𝐿)

𝜕𝑧(𝐿)
𝜕𝐸0

𝜕𝐴(𝐿)
· · · 𝜕𝑧

(1)

𝜕𝑤(1)
𝜕𝐴(1)

𝜕𝑧(1)
𝜕𝐸0

𝜕𝐴(1)

In fact, we can easily generalize this to layers with additional neurons! We need only add
subscripts 𝑘 and 𝑗 to represent the 𝑗-th neuron in layer 𝐿 and 𝑘-th neuron in the previous
layer 𝐿 − 1.
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The loss function for layer 𝐿 is basically the same, now adding subscripts to account for
each neuron.

𝐸0 =

𝑛𝐿−1∑
𝑗=0

(
𝐴
(𝐿)
𝑗
− 𝑦 𝑗

)2

We also add subscripts to represent the weights connecting the 𝑘-th neuron to the 𝑗-th
neuron as 𝑤(𝐿)

𝑗𝑘
. This gives us a new expression for 𝑧(𝐿)

𝑗
and 𝐴(𝐿)

𝑗
:

𝑧
(𝐿)
𝑗

= 𝑤
(𝐿)
𝑗0 𝐴

(𝐿−1)
0 + 𝑤(𝐿)

𝑗1 𝐴
(𝐿−1)
1 + 𝑤(𝐿)

𝑗2 𝐴
(𝐿−1)
2 + 𝛽(𝐿)

𝑗

𝐴
(𝐿)
𝑗

= 𝑔
(
𝑧
(𝐿)
𝑗

)
More generally, if layer 𝐿 − 1 has 𝐾 neurons

𝑧
(𝐿)
𝑗

= 𝛽(𝐿)
𝑗
+

𝐾∑
𝑘=1

𝑤
(𝐿)
𝑗𝑘
𝐴
(𝐿−1)
𝑘

The chain rule representations for 𝜕𝐸0

𝜕𝑤(𝐿)
𝑗𝑘

, 𝜕𝐸0

𝜕𝛽(𝐿)
𝑗

follow immediately:

𝜕𝐸0

𝜕𝑤(𝐿)
𝑗𝑘

=
𝜕𝑧(𝐿)

𝑗

𝜕𝑤(𝐿)
𝑗𝑘

𝜕𝐴(𝐿)
𝑗

𝜕𝑧(𝐿)
𝑗

𝜕𝐸0

𝜕𝐴(𝐿)
𝑗

,
𝜕𝐸0

𝜕𝛽(𝐿)
𝑗

=
𝜕𝑧(𝐿)

𝑗

𝜕𝛽(𝐿)
𝑗

𝜕𝐴(𝐿)
𝑗

𝜕𝑧(𝐿)
𝑗

𝜕𝐸0

𝜕𝐴(𝐿)
𝑗

We do need to make a slight modification for 𝜕𝐸0

𝜕𝐴(𝐿−1)
𝑘

. Since we sum over 𝑛𝐿 − 1 for the 𝐸0

and 𝐴(𝐿−1)
𝑘

contributes to 𝐸0, we must sum over layer 𝐿 for the derivative, or more
precisely:

𝜕𝐸0

𝜕𝐴(𝐿−1)
𝑘

=

𝑛𝐿−1∑
𝑗=0

𝜕𝑧(𝐿)
𝑗

𝜕𝐴(𝐿−1)
𝑘

𝜕𝐴(𝐿)
𝑗

𝜕𝑧(𝐿)
𝑗

𝜕𝐸0

𝜕𝐴(𝐿)
𝑗

Remember that we use 𝑗 for layer 𝐿 and 𝑘 for 𝐿 − 1; it is easy to get the notation confused.

Once we know how sensitive the loss function is with respect to the activations in 𝐿 − 1,
we can repeat this process for all of the weights and biases feeding into that layer.

That’s backpropagation−the powerhouse that drives deep learning!

For each iteration of backpropagation, since each weight and bias needs an update, we
compute as many partial derivatives of the loss function as there are parameters in our
neural network.
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Successful neural networks always follow the procedure laid out in this chapter. The
math and notation itself is quite tedious, but putting in the hard work leads to a truly
remarkable ending. Before we conclude neural networks, we provide one example which
follows the steps we outlined throughout the chapter.

Example 4.3. Adapt the following description of the backpropagation algorithm.

• Each training example is a pair of the form ⟨−→𝑥 ,−→𝑡 ⟩, where −→𝑥 is the vector of network
input values, and −→𝑡 is the target vector values.

• 𝜂 is the learning rate.
• 𝑛in is the number of network inputs, 𝑛hidden the number of units in the hidden layer,

and 𝑛out the number of output values.
• The input from unit 𝑖 into unit 𝑗 is 𝑥 𝑗𝑖 and the weight from unit 𝑖 to unit 𝑗 is 𝑤 𝑗𝑖 .
• Assume one hidden layer, use ReLU as the activation function in the hidden layer, do not

use an activation function for the output layer, and use squared-error as the loss function.

Initialize all network weights to small random numbers (e.g., between −0.05 and 0.05). Set
𝜂 to be small, say 𝜂 = 10−2. Repeat the following steps until the termination condition is
met: For each ⟨−→𝑥 ,−→𝑡 ⟩ in training-examples,

(a) Input the instance −→𝑥 to the hidden layer:

𝑎 𝑗 = ReLU

(∑
𝑖

𝑤 𝑗𝑖𝑥𝑖

)
= max

(
0,

∑
𝑖

𝑤 𝑗𝑖𝑥𝑖

)
(b) Since there is no activation function for the output layer, we just have

𝑜𝑘 =
∑
𝑗

𝑤𝑘 𝑗𝑎 𝑗 .

This completes forward feeding.

(c) To begin backpropagation, compute the error for the output later. Let 𝛿𝑘 = 𝜕𝐸
𝜕𝑜𝑘

. Then,

𝐸 =

∑
𝑘

(𝑜𝑘 − 𝑡𝑘)2 =⇒ 𝛿𝑘 ←−
𝜕𝐸

𝜕𝑜𝑘
= 2(𝑜𝑘 − 𝑡𝑘)

(d) The derivative of the ReLU function is

𝜕

𝜕𝑎 𝑗
ReLU(𝑎 𝑗) =

{
1 if 𝑎 𝑗 > 0
0 if 𝑎 𝑗 ≥ 0
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The error term for the hidden layer neuron is

𝛿 𝑗 =
𝜕𝐸

𝜕𝑎 𝑗
=

𝜕𝐸

𝜕𝑜𝑘

𝜕𝑜𝑘
𝜕𝑎 𝑗

𝜕𝑎 𝑗

𝜕ReLU(𝑎 𝑗)
=

∑
𝑘

𝛿𝑘𝑤𝑘 𝑗

Therefore,

𝛿 𝑗 ←−
{∑

𝑘 𝑤𝑘 𝑗𝛿𝑘 if 𝑎 𝑗 > 0
0 otherwise

(e) Update the output layer weights

𝑤𝑘 𝑗 ←− 𝑤𝑘 𝑗 − 𝜂𝛿𝑘𝑎 𝑗

(f) Update the hidden layer weights

𝑤 𝑗𝑖 ←− 𝑤 𝑗𝑖 − 𝜂𝛿 𝑗𝑥𝑖

This completes backpropagation.

34



Ryan Gomberg Math 178 Notes (Mathematical Machine Learning) Page 35 of 48

5 Decision Trees and Ensemble Methods

We have looked at various supervised learning models−kNN, linear/logistic models,
Naive Bayes, LDA/QDA, Neural Networks−each with their own spin on classification
and regression problems. Now, we consider an approach that has a similar concept to
kNN. Consider the usual setup: given a set of data {(𝑥𝑖 , 𝑦𝑖)}, can we predict where 𝑦 falls
on new data?

5.1 Decision Trees

This time, we will predict 𝑦 based on nested if-else statements or claims. Or, more plainly,
an observation will follow a trajectory based on whether it is lower than or above certain
numerical quantities. For instance, let’s say we want to predict whether a student gets
admitted into grad school. We can classify criteria accordingly:

• Primary claim: Move left if the student’s undergraduate GPA is ≤ 3.5 (1), and right if it
is > 3.5 (2).

• Secondary claim: Given (1) is true, move left is the student has at most 2 year of work
experience (3), and right if they have more than 2 year (4). Given (2) is true, move left if
the student has at most 1 year of work experience (5), and right if they have more than
1 year (6).

• Tertiary claim: For students with an undergraduate GPA ≤ 3.5 and at most 2 years of
work experience (3), move left if they participated in no clubs (7) and move right if
they participated in at least one club (8).

We can structure our findings as such:

The resulting diagram is what we call a decision tree. It uses a sequence of decisions to
partition the 𝑥-space into 𝑀 regions−𝑅1 , 𝑅2 , · · ·, 𝑅𝑀 . Each nodes 𝑁𝑖 are associated with a
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region 𝑅𝑖 in said 𝑥-space alongside a decision 𝐷𝑖 , except ones at the end. We define these
nodes leaves, or terminal nodes, as those without descendants or further
decisions/partitions.

Taking the decision tree to the right, 𝑁3 , 𝑁4 , 𝑁6 , 𝑁7 are
leaves. 𝐷𝑖 are the decisions corresponding to the nodes 𝑁𝑖 .
Therefore, there are three decision nodes: 𝐷1, 𝐷2, and 𝐷5
for the nodes 𝑁1 , 𝑁2 , 𝑁5. If an observation fails to satisfy a
claim, then we denote it as 𝐷 𝑖 . Say an observation satisfies
the claims 𝐷1 and 𝐷5 but does not satisfy 𝐷2. Then the
region 𝑅2 (node 𝑁6) is the set {𝑥 : 𝐷1 , 𝐷2 , 𝐷5}.

The grad school decision tree models a classification problem,
where the response is a binary outcome (accepted to grad
school = 1, not accepted = 0). The terminal nodes in the
model 𝑅1 , 𝑅2 , 𝑅3 , 𝑅4 , 𝑅5 are the five different regions, or
categories of students.

• 𝑅1: Student has GPA ≤ 3.5 and has more than 2 years of work experience.
• 𝑅2: Student has GPA > 3.5 and has at most one year of work experience.
• 𝑅3: Student has GPA > 3.5 and has more than one year of work experience.
• 𝑅4: Student has GPA ≤ 3.5, has at most 2 years of work experience, and has not

participated in clubs.
• 𝑅5: Student has GPA ≤ 3.5, has at most 2 years of work experience, and has

participated in at least one club.

Such a classification problem could be a (over)simplified heuristic for an admissions
board in accepting/denying students, saying that students who fall in the regions 𝑅1 , 𝑅3 ,
and 𝑅5 should get admitted and denying 𝑅2, 𝑅4.

To further simplify the problem, suppose we no longer want to use club participation as a
predictor and only use GPA and work experience in our model. How can we draw each
region in the 𝑥-plane?

Suppose 𝑥(1) measures GPA and 𝑥(2) measures work experience. Then we are concerned
with the claims 𝑥(1) ≤ 3.5 and 𝑥(2) ≤ 2 if the first claim is true and 𝑥(2) if false.
(See next page)
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Seeing how the plane is partitioned, an
admissions board would be more likely
to accept students in region 2 and region
4. Obviously, we cannot guarantee high
accuracy, especially if we are only using 2
predictors. If we decided that club participa-
tion is significant enough, we would have a
3-dimensional space and 𝑥(3) is the predictor
associated with clubs.

We now look at examples of different decision tree boundaries.

Example 5.1. Suppose 𝑥(1) and 𝑥(2) are two predictors and 𝑡1 , 𝑡2 , 𝑡3 , 𝑡4 are parameters. Let
us define regions 𝑅1 , · · ·, 𝑅5 by:
• 𝑅1 : 𝑥(1) < 𝑡1 , 𝑥

(2) < 𝑡2
• 𝑅2 : 𝑥(1) < 𝑡1 , 𝑥

(2) ≥ 𝑡2
• 𝑅3 : 𝑥(1) ≥ 𝑡1 , 𝑥(2) < 𝑡3
• 𝑅4 : 𝑥(1) ≥ 𝑡1 , 𝑥(1) ≥ 𝑡3 , 𝑥(2) < 𝑡4
• 𝑅5 : 𝑥(1) ≥ 𝑡1 , 𝑥(1) ≥ 𝑡3 , 𝑥(2) ≥ 𝑡4
Draw the corresponding decision tree and regions in the 𝑥-plane.

Example 5.2. This time, change 𝑅3 , 𝑅4 , 𝑅5 such that
• 𝑅3 : 𝑥(1) ≥ 𝑡1 , 𝑥(2) < 𝑡4 , 𝑥

(1) < 𝑡3
• 𝑅4 : 𝑥(1) ≥ 𝑡1 , 𝑥(2) < 𝑡4 , 𝑥

(1) ≥ 𝑡3
• 𝑅5 : 𝑥(1) ≥ 𝑡1 , 𝑥(2) ≥ 𝑡4
What is the new decision tree and region distribution in the 𝑥-plane?
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In theory, regions can have any shapes, but we use rectangles for simplicity and ease of
interpretation.

The general procedure for generating decision trees and boundaries, in a regression
setting, follow:
1. Divide the predictor space into 𝐽 distinct and nonoverlapping regions 𝑅1 , ..., 𝑅𝐽 .
2. For every observation that falls into the same region, we make the same

prediction−average the training observations in that region
3. Find 𝑅1 , · · ·, 𝑅𝐽 that minimize the residual sum of squared error (RSS)

RSS =

𝐽∑
𝑗=1

∑
𝑖∈𝑅 𝑗

(
𝑦𝑖 − 𝑦𝑅 𝑗

)2

where 𝑦𝑅 𝑗 is the mean response for the region 𝑅 𝑗 .
In more complex cases, it may not be feasible to check all possible combinations of
regions. So, we may just optimize for one split. At the splitting step, pick a random
predictor 𝑋𝑗 and a cutoff point 𝑆, and we split into two groups

𝑅
(𝑗 ,𝑠)
1 = {𝑥|𝑥 𝑗 < 𝑠}, 𝑅

(𝑗 ,𝑠)
𝑖

= {𝑥|𝑥 𝑗 ≥ 𝑠}

Then, we minimize ∑
𝑖:𝑥𝑖∈𝑅(𝑗 ,𝑠)1

(𝑦𝑖 − �̂�𝑅𝑖)2 +
∑

𝑖:𝑥𝑖∈𝑅(𝑗 ,𝑠)2

(𝑦𝑖 − �̂�𝑅2)2

This is known as the greedy algorithm since it makes the best local decision without
considering future splits.

Remark: For classification models, we take the majority vote in each region.
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A decision tree function for regression models is computed by

𝑓 (𝑥) =
𝐽∑

𝑚=1
𝑐𝑚1𝑥∈𝑅𝑚

Here 1 is the indicator function, given by

1𝑥∈𝑅𝑚 =

{
1 if 𝑥 ∈ 𝑅𝑚
0 otherwise

which really just tells us to return 1 if 𝑥 belongs to a particular region. 𝑐𝑚 is the average
response in the corresponding region.

Example 5.3. Suppose we wanted to train a decision tree regression model based on 5
data points ((

2
1

)
, 5

)
,

((
3
2

)
, 7

)
,

((
5
−2

)
,−1

)
,

((
6
3

)
, 2

)
,

((
10
−5

)
,−8

)
with the decision boundaries 𝐷1 : 𝑥1 < 4, 𝐷2 : 𝑥1 < 6. Construct a decision tree model
𝑓 (𝑥) that predicts an outcome 𝑦 for new data. Additionally, compute the RSS.

Let 𝑅1 be the region left of 𝐷1, 𝑅2 be the region between 𝐷2 and 𝐷3, and 𝑅3 be the
region to the right of 𝐷2. Label 𝑁1 → 𝑁5 be the given nodes from left to right. Then,
𝑁1 , 𝑁2 ∈ 𝑅1 , 𝑁3 , 𝑁4 ∈ 𝑅2, and 𝑁5 ∈ 𝑅3. We compute 𝑐𝑚 as the average of the responses
for each region.

𝑐1 =
5 + 7

2 = 6, 𝑐2 =
2 − 1

2 =
1
2 , 𝑐3 =

−8
1 = −8.

Then, the function can be modeled accordingly:

𝑓 (𝑥) = 6 · 1𝑥∈𝑅1 +
1
2 · 1𝑥∈𝑅2 − 8 · 1𝑥∈𝑅3 .

The RSS for each region is computed as the sum of differences between the observed value
and average of observed values, squared.
For 𝑅1:

RSS1 = (5 − 6)2 + (7 − 6)2 = 2
For 𝑅2:

RSS2 =

(
−1 − 1

2

)2

+
(
2 − 1

2

)2

= 2.25 + 2.25 = 4.5

For 𝑅3:
RSS3 = (−8 + 8)2 = 0

The total RSS is therefore RSS1 + RSS2 + RSS3 = 2 + 4.5 + 0 = 6.5.
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Intuitively, if similar outputs are in the same region, we obtain a better cut.

Decision trees are more likely to overfit our training data, especially if we choose a
greater depth (more decisions and nodes). In summary, they are sensitive to training
data which leads to high variance and low bias. In a practical setting, decision
boundaries for decision trees are nonlinear, which poses an advantage compared to a
standard linear regression model. Decision trees are non-parametric and have horizontal
or vertical decision boundaries.

5.2 Random Forests

The goal of this section is to produce a model that tries to solve the overfitting dilemma
that decision trees are prone to.

Decision trees overfit test data due to their large variance. Consider a new idea: what if
we construct multiple trees and take the average? Let there be 𝑛 independent
observations 𝑧1 , · · ·, 𝑧𝑛 following a normal distribution of mean 0 and variance 𝜎2. Then,

𝑧 =
1
𝑛

𝑛∑
𝑖=1

𝑧𝑖 , Var (𝑧) = Var
(

1
𝑛

∑
𝑧𝑖

)
=

1
𝑛2

𝑛∑
𝑖=1

Var𝑧𝑖

=
1
𝑛2

𝑛∑
𝑖=1

𝜎2 =
𝜎2

𝑛

Hence, if we average the predictions then the end results will have low variance (i.e.
constructing multiple trees using different training set). We construct 𝑓 (1) , 𝑓 (2) , · · ·, 𝑓 (𝐵)
trees. Then,

𝑓 (𝑥) = 1
𝐵

𝐵∑
𝑏=1

𝑓 (𝑏)(𝑥)

This approach is called bagging.

While this helps fix overfitting to some extent, we can make some more restrictions.
Instead of randomly choosing one of 𝑝 features to split, choose one out of 𝑚 features such
that 𝑚 < 𝑝. A fresh sample of 𝑚 predictors is taken at each split. This is a random forest,
which notably has less variance than bagging and individual decision trees. For
regression problems, we fit many trees and take an average of their predictions, and for
classification problems we take the majority vote.

Remark: A common choice for 𝑚 is √𝑝.

In summary, decision trees work great on training data, but tend to capture the noise on
test data and overfit as a result. Random forests solve this problem by combining
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bootstrapping, bagging, and randomness to reduce variance and capture less noise on
test data.

Aside: While random forests are often sufficient enough in modeling data with high
accuracy, we impose a new method to construct multiple trees sequentially. Here is an
overview of the algorithm:

1. Set 𝑓 (𝑥) = 0, 𝑟𝑖 = 𝑦𝑖 ∀𝑖 in training set.
2. For 𝑏 = 1, · · ·, 𝐵:

(a) Fit a tree with 𝑑 splits to that training data (𝑋, 𝑟𝑖)
(b) Update 𝑓 : 𝑓 (𝑥) = 𝑓 (𝑥) + 𝜆 𝑓 (𝑘)(𝑥)
(c) Update the residual 𝑟𝑖 = 𝑟𝑖 − 𝜆 𝑓 (𝑘)(𝑥𝑖)

3. Return

𝑓 (𝑥) =
𝐵∑
𝑖=1

𝜆 𝑓 (𝑏)(𝑥𝑖).

This is known as boosting. It aims to help weaker models with more misclassified samples
(larger error/residual) by giving them higher weights, making the next model focus on
them. This process is repeated until we have 𝐵 models. The final prediction is given as
the weighted combination of the 𝐵 models. This generally lowers bias because it focuses on
predictions that are harder to classify, but can also fall to overfitting if there are too many
“weak" models.

While a random forest trains all 𝐵 models in parallel, boosting emphasizes the improve-
ment of models one-by-one to strengthen the accuracy of the final model.
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6 Unsupervised Learning

The first five sections introduced methods of supervised learning, where we train a
model and use it to predict a label 𝑦.

Recall from Section 1 that in unsupervised learning, there is no label to be predicted. All
we have is a dataset 𝑋 ∈ R𝑛×𝑝 and the general task is to explore the pattern of data. There
are two types of methodologies that both aim to find these trends−dimension reduction
and clustering.

Before proceeding, we assume that all features of 𝑋 has mean zero. For arbitrary 𝑋, we
can pre-process it by subtracting the mean of each variable for the corresponding column.

6.1 Principal Component Analysis (PCA)

Principal Component Analysis is one of many dimension reduction problems. Given a
high-dimensional dataset 𝑋 ∈ R𝑛×𝑝 (or 𝑛 data in R𝑝), we want to find a 𝑘-dimensional
subspace that “preserves" the high-dimensional information. This is obtained through
means of an orthogonal projection function.
• A naive solution is to randomly pick 𝑘 components of 𝑋, but we are going to lose a lot

of information this way.
• A more reasonable assumption is that our projection function is a linear

transformation, where the linear coefficients depends on the “structure" of the dataset.
This is to say that the “new coordinates" are a linear mapping/combination of “old
coordinates."

• Reducing dimensions can help remove features that may contain a lot of redundant
information and improve the efficiency and performance of machine learning models.

If you have ever heard of the phrase, “describe yourself in two words," this is the essence
of PCA and dimension reduction! Wanting to say the most about yourself using as fewest
words as possible, in the realm of machine learning, translates to: how much can we
maximize the information in our dataset using the simplest model possible?

We motivate two ways to derive this. The first of which is a more naive approach.

Lagrange Multipliers

Following the assumptions about 𝑋 (namely the fact that it is centered), we construct a
covariance matrix 𝐶 which describes the relationship between the features

𝐶 =
1
𝑛
𝑋𝑇𝑋 ∈ R𝑝×𝑝 = 𝐸

[
𝑋𝑇𝑋

]
The goal is to describe the most but say the least about 𝐶. This is equivalent to finding a
−→𝑣 such that the projection of the covariances onto −→𝑣 is the smallest. Mathematically, we

42



Ryan Gomberg Math 178 Notes (Mathematical Machine Learning) Page 43 of 48

describe this as

𝑣 ∈ R𝑝 , ||𝑣|| = 1 such that

max
||−→𝑣 ||=1

−→𝑣 𝑇𝐶−→𝑣

We can find −→𝑣 through a constraint opti-
mization problem:

max−→𝑣 𝑇𝐶−→𝑣︸  ︷︷  ︸
𝑓 (𝑣)

given ||−→𝑣 || = 1 =
−→𝑣 𝑇−→𝑣︸︷︷︸
𝑔(𝑣)

This is where Lagrange Multipliers come in. The optimization problem satisfies

∇ 𝑓 = 𝜆∇𝑔 =⇒ℒ(𝑣) = ∇ 𝑓 − 𝜆∇𝑔 = 0

We can cheat a little and use the quadratic form of 𝑓 (𝑣) to say it is technically equal to(−→𝑣 )2
𝐶.

∇ 𝑓 = 2−→𝑣 𝑇𝐶, ∇𝑔 = 2−→𝑣 𝑇

=⇒ 2−→𝑣 𝑇𝐶 = 𝜆2−→𝑣 𝑇 =⇒ −→𝑣 𝑇𝐶 = 𝜆−→𝑣 𝑇

Since 𝐶 is symmetric, the adjoint (or transpose) of 𝐶 follows 𝐶𝑇 = 𝐶.

𝐶𝑇−→𝑣 = 𝜆−→𝑣 =⇒ 𝐶−→𝑣 = 𝜆−→𝑣

This is to say, the eigenvectors of 𝐶 optimize our covariances, known as the principal
components! Note that 𝐶 is a positive semi-definite matrix, satisfying −→𝑣 𝑇𝐶−→𝑣 ≥ 0, so the
eigenvalues will be strictly positive (under the assumption 𝑛 > 𝑝, which is almost always
the case anyway). We will dive into the interpretation of principal components later, but
we introduce a second process of obtaining the same results.

Singular Value Decomposition

Singular Value Decomposition (SVD) yields a more interpretable conclusion compared to
Lagrange multipliers. Recall that for a linear operator 𝑇 ∈ R𝑛×𝑝 : R𝑝 → R𝑛 , it can be
decomposed into

𝑇 = 𝑈Σ𝑉𝑇

where𝑈 and 𝑉 are 𝑛 × 𝑛 and 𝑝 × 𝑝 unitary matrices, and Σ is a 𝑝 × 𝑝 diagonal matrix
containing the singular values (𝜎) of 𝑇. A unique property about unitary matrices shows
that they contain orthonormal columns, generating an orthogonal basis of
R𝑝

[
𝑣1 , · · · , 𝑣𝑝

]
, which will be the basis of the principal components (the important

directions). When applying 𝑇 to an arbitrary vector −→𝑥 , then we have

𝑇−→𝑥 = 𝑈Σ𝑉𝑇−→𝑥
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We can apply the general idea to our dataset 𝑋 ∈ R𝑛×𝑝 , where

𝑋 = 𝑈Σ𝑉𝑇

Suppose a simple example where 𝑛 = 2, 𝑝 = 2. What type of transformations are Σ and
𝑉𝑇?

We start with the unit circle, where the norm of any vector lying on the circle is equal to
1. 𝑈 is a rotation matrix; however, the ball will not change form regardless of what𝑈 is.
Applying Σ squishes or stretches the ball to an ellipse with a major axis of length 𝜎1 (larger
singular value) and minor axis of length 𝜎2. Once again, 𝑉𝑇 is a rotation matrix, rotating
the “basis" of the orthogonal singular values (in this illustration, by roughly 45◦).

In the context of linear algebra,𝑈Σ multiplies different columns in𝑈 by the singular
values 𝜎𝑖’s, and𝑈Σ𝑉𝑇 constructs a linear combination of rows in𝑉𝑇 by coefficients in the
corresponding coordinate in𝑈Σ, producing a new orthonormal frame. The matrix
product𝑈Σ produces the scores of a principal component, or namely the coordinates or
positions of the data in the “new" space. For instance, 𝜎1 contains the most information,
and this is the typical convention because he singular values in Σ are always ordered in
descending order: 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑝 .

Interpretation
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In summary, principal components emphasize the direction of the direction and its score
explains the spread of data, or explained variance in that direction. Scores are
transformed coordinates of the data points into the new principal component subspace.
With how singular values are obtained, we say the most explained variance is observed in
the first principal component and descending with each successive principal component.
In other words, the explained variance ratio should decrease with each principal
component. Using the plot from the previous page (with 𝑛 = 100, 𝑘 components = 2)

• The arrow pointing in the direction of the “major axis" has the highest explained
variance ratio (as given by its magnitude) and thus explains the most information in
our data.

• The arrow pointing in the direction of the minor axis has the lowest score/explained
variance and thus explains the least information in our data.

We could suggest that the data can be further reduced to one dimension−that the data is
generated along one line (major axis) and the short line (minor axis) merely corresponds
to “noise." For instance, we would be compelled to believe this if the 1st explained
variance ratio was 0.98 and the 2nd was 0.02.

Remark 1: Additionally, because 𝑉 is unitary, 𝑉𝑇𝑉 = 𝐼 and so

𝑋𝑉 = 𝑈Σ

implying that the projection of the data onto the principal component space spanned by
𝑉 , which rotates the data that has the largest variance. This is equivalent to the score!

Remark 2: In an unrealistic scenario, if the explained variance ratio is 1.00 for the first
principal component, then our data is one-dimensional (line pointing in the direction
corresponding to the first vector in the orthogonal basis). Since principal components are
generated from an orthogonal basis, each principal component is orthogonal to each
other.

Example 6.1. Motivation: Nowadays, facial recognition is widely used for ID verification,
known as Face ID. Apple’s innovative discovery in 2017 introduced this technology.
Before setting up your “ID," you are required to take photos of yourself at different angles.
For subsequent uses of your phone, accessing it and transactions are often locked behind
Face ID as a safety measure.

Problem: Suppose we have a 64 × 64 greyscale image (thought of a point in R4096), which
is the “digital expression" of the person’s face, and a dataset of 16 similar pictures (the
different angles in this case), explain how we could use PCA to reduce this into a 200-
dimensional subspace. Interpret the 200-dimensional subspace in context of the problem
and describe a quantitative method that explains why 200 dimensions may be appropriate.
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Idea: We would project the 4096-dimensional vector onto the top 200 principal com-
ponents, obtaining a 200-dimensional representation of each face, capturing the most
significant facial variations while removing noise and redundancy.

The 200 principal components span a subspace that contribute to parts of the facial struc-
ture (eyes, eyebrows, glasses, lighting), ensuring efficient storage and fast computation.
To summarize, lowering the dimension maintains key characteristics of a person’s face
while removing unnecessary features.

If 200 dimensions gives us at least 95% explained variance, then this ensures that the
reduced subspace still retains most of the information. If we lower our metric for the
explained variance too much (i.e. 70%), we lose more critical identity information,
generating more false positives and making it easier for unauthorized users to access
anyone’s phone.

Conclusion: This example emphasizes the importance of choosing a reasonable dimension
to reduce to and identifying a cutoff for explained variance (balancing security vs. effi-
ciency). With a lower explained variance ratio, we require fewer principal components,
blurring the line between individual differences. Therefore, it recognizes different faces
as “similar" and ultimately leads to misclassification.

6.2 K-Means Clustering

In addition to dimension reduction methods, another typical task in unsupervised
learning model is clustering: assigning data samples into several groups, or clusters,
based on their similarities. Similar samples should fall in the same cluster and dissimilar
samples should be in different clusters.

Mathematically, when given a set of observations 𝑋 ∈ R(𝑛×𝑝), 𝑘-means clustering aims to
partition the 𝑛 samples into 𝐾 sets such that 𝑆 = 𝑆1 , 𝑆2 , · · · , 𝑆𝐾 , 𝐾 ≤ 𝑛, so as to minimize
the within-cluster sum of squares (variance). Or more formally, we wish to find the best
partition of groups that minimize the loss function of 𝑆:

min
𝑆

𝐾∑
𝑖=1

∑
𝑥∈𝑆𝑖
||𝑥 − 𝜇𝑖||2

where 𝜇𝑖 is the cluster centroid or mean of all points in each 𝑆𝑖 . The task itself is very
difficult; the common approach is in applying Lloyd’s algorithm for finding evenly
spaced points in Euclidean space. However, the steps are easily streamlined:

• Given the current cluster centroid, update the cluster of data according to its nearest
cluster centroid (assignment)
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• Given the cluster assignment, update the cluster centroid by calculating the means
within each cluster (update). These steps are realized in the illustration below.

The cluster centroids for each class, or color, are given by the large circles, with the
observations being the smaller ones. The color for each observation should match the
cluster centroid it is closest to. In the first iteration, most observations agree with their
closest center. When applying the update step, corrections are made to the previously
mismatched observations. By changing color, each class loses and gains new
observations, which in turn changes the location of each centroid. Seeing as all
observations are now assigned their correct color, we can stop here.

Some general conclusions about K-Means clustering:

• We also need to determine the number of classes 𝐾 to stratify the data into. In practice,
this is a difficult task that is separable from the algorithm itself. It uses a similar
approach of explained variance in PCA, computing how much explained variance is
added for each cluster. Once the change is negligible, we count the total number of
clusters.

• This is not KNN! K-means makes changes within our existing data, whereas KNN is
applied on new data and based on its closest points, not by clusters of classes.

• As with loss functions in other machine learning models, we are not guaranteed a
global minimum. In K-means clustering, a general approach is to randomly run
different initializations of the algorithm in parallel and testing which set of partitions
yields the smallest loss.
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7 References

All diagrams were self-curated. However, some of them were inspired by 3Blue1Brown’s
playlist on Neural Networks, which is attached below! The notes themselves were also
influenced by the textbook: An Introduction to Statistical Learning with Python.

https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_
67000Dx_ZCJB-3pi
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