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1 Introduction to Arbitrage
The goal of this section is to identify moments of profit without risk. After all, any such
opportunities are rare and most financial scenarios assume fairness between both parties.
Managing portfolios is all about optimizing profit with the lowest risk possible. The following
definitions summarize our motivation:

Definition 1.1. Arbitrage is profit without risk, or taking advantage of a difference in price between
multiple markets. Hedging a portfolio involves managing bets or investments to eradicate risk.

We will look at cases where simple arbitrage opportunities present themselves.

1.1 Sports Betting
Odds, defined by the ratio between the amounts staked by parties, is what underlines a bet. Odds
are not constructed arbitrarily, but rather based on expected probability. If one team is more
favored, their odds go up.
• A party that offers 3:2 odds implies that they believe their team has a higher chance of winning.

If they win, you lose the money spent on the bet. If they lose, you gain 150% of the initial bet.
• Of course, higher odds are less favorable, should you choose to accept such a bet. However, if

you win the bet, the returns are much higher.

If we are given multiple bets, how should manage our money?

Example 1.2. Two people have different opinions on the UCI vs. UCSD basketball game to be
played tonight. One person supports UCI and is willing to offer 11:10 odds; the other person
supports UCSD and is willing to offer 5:3 odds. Determine how much you should bet with each
person. If you have $100 to invest, how much are you assured of earning?

The solution to this problem is no more than a system of two linear inequalities. Suppose you bet
𝑥 dollars to the UCI fan. Then, you bet 100 − 𝑥 to the UCSD fan. We can summarize our earnings
and losses in the below table:

UCI Wins UCLA Wins
UCI Fan −𝑥 1.1𝑥

UCLA Fan 5
3 (100 − 𝑥) −(100 − 𝑥)

We derive two profit conditions: one for each team.

UCI Wins: − 𝑥 + 5
3 (100 − 𝑥) > 0 =⇒ 100 − 𝑥 >

3
5 𝑥 =⇒ 𝑥 < 62.5.

UCLA Wins: 1.1𝑥 − 100 + 𝑥 > 0 =⇒ 2.1𝑥 > 100 =⇒ 𝑥 > 47.62.

These inequalities suggest that we earn money if 𝑥 > 46.72 AND if 𝑥 < 62.5. Betting some amount
of 𝑥 within this region guarantees us profit regardless of the outcome! Rather than setting each
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condition as inequalities, what if we set the two profit conditions equal to each other?

2.1𝑥∗ − 100 =
500
3 − 8

3 𝑥
∗ ⇐⇒ 𝑥∗ = 55.94.

By setting these equations equal to each other, we are no longer guessing our earnings. Plug in 𝑥∗

into either profit condition and find that, if we bet $55.94 to the UCI Fan and $44.06 to the UCLA
Fan, we are guaranteed of earning 𝑝∗ = $17.47, regardless of the outcome.

Notice how the region of profit is between where the blue and red lines cross the 𝑥-axis. Our
maximum profit within this region is if we bet 𝑥 = 47.62 to the UCI fan. If they lose, we earn
$39.68. If they win, we break even.

We can generalize the results from the previous exercise to more than two counterparties:

Theorem 1.3. Let 𝑂1 : 1, 𝑂2 : 1, · · ·, 𝑂𝑛 : 1 be the odds offered for 𝑛 mutually exclusive outcomes, and
let 𝑁 be the total amount to bet. The optimal bet amount on outcome 𝑖, denoted by 𝑥∗

𝑖
, and the guaranteed

profit, denoted by 𝑝∗, are given by

𝑥∗𝑖 =
𝑁∑𝑛

𝑗=1
1

1+𝑂 𝑗

· 1
1 + 𝑂𝑖

𝑝∗ = 𝑁

( ∏𝑛
𝑖=1(1 + 𝑂𝑖)∑𝑛

𝑗=1
∏

𝑘≠𝑗(1 + 𝑂𝑘)
− 1

)
An arbitrage opportunity exists if and only if

𝑛∑
𝑖=1

1
1 + 𝑂𝑖

< 1.
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In the case of Example 1.2, where there are only two counterparties 𝐴 and 𝐵, the expressions in
Theorem 1.3 reduce to

𝑥∗ =
𝑁(1 + 𝑂𝐵)

2 + 𝑂𝐴 + 𝑂𝐵
, 𝑝∗ =

𝑁(𝑂𝐴𝑂𝐵 − 1)
2 + 𝑂𝐴 + 𝑂𝐵

.

We can verify that we indeed obtain the same values using this formula. Additionally, the ones
presented in the Theorem save us the trouble of solving multiple systems of equations. Generally,
it is easier to program a function that achieves this. Refer to the code section at the end of the
notes for an optimal bets function coded in MATLAB.

Remark: If do not wish to eliminate all risk, but instead, not lose more than 𝑝 dollars no matter
what happens. Then, we could set the inequalities in a new way:

UCI Wins: − 𝑥 + 5
3 (100 − 𝑥) > −𝑝

UCLA Wins: 1.1𝑥 − 100 + 𝑥 > −𝑝

1.2 Probability Review: Part I
Next, we present an overview of standard definitions from probability theory:

Definition 1.4. Suppose {𝑋}𝑛
𝑖=1 is a discrete random variable that takes on values {𝑥1 , 𝑥2 , · · ·, 𝑥𝑛}

with probabilities {𝑝1 , 𝑝2 , 𝑝3 , · · ·, 𝑝𝑛} such that
∑𝑛

𝑖=1 𝑝𝑛 = 1. Then, the expected value of 𝑋, or 𝐸[𝑋],
is given by

𝐸[𝑋] =
𝑛∑
𝑖=1

𝑥𝑖𝑝𝑖 .

Example 1.5. Suppose we roll a fair die numbered 1 to 6. What is the expected value of one roll?

The probability of rolling any number is 1
6 . So, {𝑋}𝑛

𝑖=1 = {1, 2, 3, 4, 5, 6} with probabilities{ 1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6
}
. Then,

𝐸[𝑋] =
6∑
𝑖=1

𝑥𝑖𝑝𝑖 =
1
6 + 2

6 + 3
6 + 4

6 + 5
6 + 6

6 =
21
6 =

7
2 .

This does not really give us much information. Suppose we rolled a fair die 100 times and computed
the sum. What is the expected value?

100𝐸[𝑋] = 700.

So, if we roll a die 100 times, the sum of each number is most likely to be 700.
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Definition 1.6. Suppose {𝑋}𝑛
𝑖=1 is a discrete random variable that takes on values {𝑥1 , 𝑥2 , · · ·, 𝑥𝑛}

with probabilities {𝑝1 , 𝑝2 , 𝑝3 , · · ·, 𝑝𝑛} such that
∑𝑛

𝑖=1 𝑝𝑛 = 1. Then, the variance of 𝑋, or Var(𝑋), is
given by

Var(𝑋) = 𝐸[𝑋2] − (𝐸[𝑋])2.
Here 𝐸[𝑋2] = ∑𝑛

𝑖=1 𝑥
2
𝑖
𝑝𝑖 . Additionally, for 𝑎, 𝑏 ∈ R,

Var(𝑎𝑋 + 𝑏) = 𝑎2Var(𝑋).

Example 1.7. What is the variance of a fair die, numbered 1 to 6, when rolled once? When rolled
100 times?

When rolled once,

𝐸[𝑋2] = 1
6

(
12 + 22 + 32 + 42 + 52 + 62) = 91

6 , (𝐸[𝑋])2 =

(
7
2

)2

=
49
4

=⇒ Var(𝑋) = 91
6 − 49

4 =
35
12 .

When rolled 100 times,
100Var(𝑋) = 875

3 .

Definition 1.8. Let 𝑋 be a random variable with mean 𝜇 = 𝐸[𝑋] and variance 𝜎2 = Var(𝑋). The
standard form of a random variable, 𝑍, is given by

𝑍 =
𝑋 − 𝜇

𝜎
.

With this transformation, 𝐸[𝑍] = 0 and Var(𝑍) = 1. Note that 𝜎 is the standard deviation given by√
Var(𝑋) = 𝜎.

Proof. By construction, we have

𝐸[𝑍] = 𝐸

(
𝑋 − 𝐸[𝑋]

𝜎

)
=

1
𝜎
𝐸(𝑋 − 𝐸[𝑋]) = 1

𝜎
(𝐸[𝑋] − 𝐸[𝑋]) = 0.

Var(𝑍) = 𝐸(𝑍2) − (𝐸[𝑍])2︸  ︷︷  ︸
=0

= 𝐸

(
𝑋 − 𝐸(𝑋)

𝜎

)2

= 𝐸

(
𝑋2 − 2𝑋𝐸(𝑋) + (𝐸(𝑋))2

𝜎2

)
=

1
𝜎2𝐸(𝑋

2 − (𝐸(𝑋)2)) = 1
𝜎2 · 𝜎2 = 1.

□

4



Ryan Gomberg Math 176 Notes (Math of Finance) Page 5 of 51

Example 1.9. Standardize the random variable given by rolling a fair die once and 100 times.

Once: 𝑍 =
𝑋 − 3.5

3.5 , 100 times: 𝑍 =
𝑋 − 35

12√
875
3

=
𝑋 − 2.92

17.08 .

The definitions we have given up to this point help us introduce a broader behavior of random
variables.

Definition 1.10. A standardized random variable 𝑧, with mean 𝜇 and variance 𝜎 that is normally
distributed follows a bell-shaped curve and satisfies the following:

𝑓 (𝑧) = 1√
2𝜋

𝑒−
𝑧2
2

𝑃(𝑧 ≤ 𝑧0) =
∫ 𝑧0

−∞
𝑓 (𝑧)𝑑𝑧 = 𝒩(𝑧0)∫ ∞

−∞
𝑓 (𝑧)𝑑𝑧 = 1

Recall that 𝑧 =
𝑋−𝜇
𝜎 . This is formerly known as the standard normal distribution. Mathematically,

we say 𝑧 ∼ 𝒩(𝜇, 𝜎2).

• 𝜇, or the mean, shifts the normal distribution curve. If 𝜇 = 2, then the center of the bell curve is
at 𝑧 = 2.

• 𝜎, or the variance, narrows or widens the spread of the curve. A normal distribution with
variance 𝜎 = 4 will be wider and have a lower peak.

• A normal distribution is symmetric with respect to the mean 𝜇. So, 𝑃(𝑧 ≤ 0) = 𝑃(𝑧 ≥ 0) = 0.5.
The graph below shows a set of different normal distributions, capturing the ideas mentioned
above.
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Definition 1.11. When independent, identically distributed random variables are added, their
sum tends toward a normal distribution regardless of how the original variables are distributed.
This is the Central Limit Theorem.

Remark: Generally, we take 𝑛 ≥ 30 iterations to assume that the real distribution is normal.

Example 1.12. We revisit the die problem from earlier. The normal distribution representation of
each (one roll vs. 100 rolls) are shown below:

Pay close attention to the mean and peaks between these two curves, namely the scale on each
axis. The normal distribution for the red curve is actually flatter and wider to account for the large
variance. We cannot generalize any results for the blue curve because we are only rolling the die a
single time. Additionally, we cannot assume that outcome for rolling a single die follows a normal
distribution from the Central Limit Theorem.

We can use apply the notion of normal distributions to measure the likelihood of an outcome.

Example 1.13. Suppose you have a fair die. You are playing a game where, if a 1 or 2 appears, you
win $1. If a 3, 4, 5 appears, you win $2. If you roll a 6, you lose $4. If the game is played 90 times,
what is the likelihood of winning at least $50?

First, we want to compute the expectation and variance of 𝑋.

𝐸[𝑋] =
(
1
6 + 1

6

)
+ 2 ·

(
1
6 + 1

6 + 1
6

)
− 4 · 1

6 =
2
3

Var(𝑋) = 𝐸[𝑋2] − (𝐸[𝑋])2 =

(
1
3 + 1

2 · 22 + 1
6 · 42

)
− 4

9 =
41
9

Define 𝑌 as the random variable of playing the game 𝑋 90 times. So, 𝐸[𝑌] = 60 and Var(𝑌) = 410.
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The likelihood of winning at least $50 is given by

𝑃(𝑌 ≥ 12) = 𝑃

(
𝑌 − 𝐸[𝑌]

𝜎𝑌

)
= 𝑃

(
𝑍 ≥ − 10√

410

)
Plugging into the Normal distribution curve gives∫ ∞

− −10√
410

1√
2𝜋

𝑒−
1
2 𝑧

2
𝑑𝑧 ≈ 0.6893 = 68.93%.

Definition 1.14. A continuous random variable 𝑥 is characterized by its probability density function
(PDF) 𝑓 (𝑥) which satisfies

𝑃(𝑎 ≤ 𝑥 ≤ 𝑏) =
∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 and
∫ ∞

−∞
𝑓 (𝑥)𝑑𝑥 = 1

Example 1.15. Let the PDF for a random variable 𝑥 be given by

𝑓 (𝑥) =


0 if −∞ < 𝑥 < 0
𝐶𝑥 if 0 ≤ 𝑥 ≤ 3
0 if 𝑥 > 3

Find the value of 𝐶 such that this is a probability distribution.∫ ∞

−∞
𝑓 (𝑥) =

∫ 3

0
𝐶𝑥𝑑𝑥 =

𝐶

2 [𝑥2]𝑥=3
𝑥=0 = 1 =⇒ 𝐶 =

2
9 .

Theorem 1.16. Let 𝑋(𝑥) be a random variable with 𝑓 (𝑥) as the PDF. The expected value and variance of
𝑋 is

𝐸[𝑋] =
∫ ∞

−∞
𝑋(𝑥) 𝑓 (𝑥)𝑑𝑥, Var(𝑋) = 𝐸[𝑋2] − (𝐸[𝑋])2

where
𝐸[𝑋2] =

∫ ∞

−∞
[𝑋(𝑥)]2 𝑓 (𝑥)𝑑𝑥

Example 1.17. Use the PDF from Example 1.15. If 𝑋(𝑥) = 𝑥 is the random variable giving the
value of the selected number, what is 𝐸[𝑋]? Var(𝑋)?

We have that 𝑓 (𝑥) = 2
9 𝑥.

𝐸[𝑋] = 2
9

∫ 3

0
𝑥2𝑑𝑥 =

2
9 · 1

3 [𝑥
3]30 = 2 =⇒ (𝐸[𝑋])2 = 4
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𝐸[𝑋2] = 2
9

∫ 3

0
𝑥3𝑑𝑥 =

2
9 · 1

4 [𝑥
4]30 =

9
2

=⇒ Var(𝑋) = 9
2 − 4 =

1
2 .

1.3 Fair Bets and Horse Betting
We apply some results from the previous section to betting.

Theorem 1.18. A fair bet occurs when the expected value of the winnings between two parties is zero. The
implied probability that a team wins is derived from a fair bet. Generally, if Fan A offers a fair bet with odds
𝑂𝐴 : 1, we have

𝑃𝐴(𝐴) =
𝑂𝐴

1 + 𝑂𝐴
.

Proof. Let 0 ≤ 𝑃(𝑊) ≤ 1 be the probability in which your team wins and 1 − 𝑃(𝑊) the probability
in which your team loses. Then,

𝑊 =

{
−1 your team loses
𝑂𝐴 your team wins

In a fair bet, we want the expected winnings 𝐸[𝑊] to be zero.

𝐸[𝑊] = −(1 − 𝑃(𝑊)) + 𝑂𝐴𝑃(𝑊) = 0 ⇐⇒ 𝑃(𝑊) − 1 + 𝑂𝐴𝑃(𝑊) = 0

⇐⇒ 𝑃(𝑊)(1 + 𝑂𝐴) = 1 ⇐⇒ 𝑃(𝑊) = 1
1 + 𝑂𝐴

.

The implied probability of losing is 1 − 𝑃(𝑊):

1 − 𝑃(𝑊) = 1 − 1
1 + 𝑂𝐴

=
𝑂𝐴

1 + 𝑂𝐴
.

□

To close this section, we look at horse betting.
Odds in horse racing are computed as such:
• Victory probabilities are computed as the fraction of the total dollars wagered on each horse.

They serve to measure the aggregate consensus of all betters at the track.
• The track wishes to earn 𝑥 cents on each dollar bet, independent of what happens in the race.
• The odds/payoff for each horse is computed by setting the total revenue for each horse to 𝑥.

Example 1.19. Suppose at an off-track betting facility, just before the four horse race starts, it is
learned that 400 dollar bets have been made on 𝐴, 200 on 𝐵, 300 on 𝐶, and 100 on 𝐷. In order for
the owner to earn 4 cents on each dollar bet, determine the payoff for each horse.

If 𝑂𝐴 , 𝑂𝐵 , 𝑂𝐶 , 𝑂𝐷 are the odds of each horse winning, then
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Winner Revenue A Revenue B Revenue C Revenue D Total Revenue
A −400𝑂𝐴 +200 +300 +100 600 − 400𝑂𝐴

B +400 −200𝑂𝐵 +300 +100 800 − 200𝑂𝐵

C +400 +200 −300𝑂𝐶 +100 700 − 300𝑂𝐶

D +400 +200 +300 −100𝑂𝐷 900 − 100𝑂𝐷

For each row, we set the total revenue equal to the money the track earns per dollar bet, and then
solve for each probability. We obtain

600 − 400𝑂𝐴 = 0.04(100 + 200 + 300 + 400) =⇒ 600 − 400𝐴 = 40 =⇒ 𝑂𝐴 = 1.4.

We can set the other total revenue expressions equal to 400 to obtain the payoffs for 𝐵, 𝐶, 𝐷:

𝑂𝐵 = 2, 𝑂𝐶 = 1, 𝑂𝐷 = 5

Hence the payoff for each horse is $1.40 for A, $2.00 for B, $1.00 for C, and $5.00 for D.

Code that solves any horse betting problem can also be found in the code section.
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2 Introduction to Options and Stocks

2.1 Options and Stocks
At every moment, stocks are always susceptible to change. While these fluctuations are often
subtle, most quantitative traders cannot predict any outcome, even dramatic changes in stock
prices. Here, we only provide a simple heuristic for thinking about option pricing, which
hopefully gets us one foot in the door into optimally managing stocks. We begin with some
definitions that underline the relationship between consumers and sellers in the market:

Definition 2.1. Options are financial derivatives that give the buyer the right the right to buy or
sell an underlying asset at a pre-agreed price at a future date. Options are purchased at the price
the shorter sets, or the premium. One cannot use the option until the premium is paid in full.
1. Longing an option gives you the right to buy the asset and shorting, or selling, an option means

you are selling rights to the counterparty with an obligation to fulfill.
2. Call options allows the buyer the right to purchase the asset at the pre-agreed price any time

before the expiration date; put options allows the buyer the right to sell the asset at the pre-
agreed price any time before the expiration date.

The pre-agreed price is referred to as the strike price.

Keep in mind that when we long an option, we are not obligated to buy or sell the asset at any
point. In fact, if the price of the stock changes such that we are at a loss by buying or selling, it is
recommended to not take action and let the option go through. When this happens, we say the
option expires worthless.

Combining the notion of longing/shorting and calls/puts gives us four different types of option
pricing:

Definition 2.2. Longing a call is the right to exercise a purchase of the stock at price 𝐸. Only
exercise your right if the stock price exceeds the strike price (𝑆 > 𝐸). The maximum possible loss
is the premium.

𝐶𝐸(𝑆, 𝑡) = max(0, 𝑆 − 𝐸).

Generally, long calls are the safest option to invest in as your possible returns are boundless. If the
stock price falls below the strike price, you let the option expire worthless and only lose the
premium you paid for. We can construct a graph (porfolio value vs. stock price) to better
understand the relationship. Here the 𝑥-axis and 𝑦-axis depict the price of the stock price and

portfolio value at the expiration date, respectively. So
long as 𝑆 > 𝐸, you are making profit. If 𝐸 < 𝑆, the
option expires worthless. The graph assumes there is
no premium.
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Definition 2.3. Shorting a call is selling the call option to a buyer. You are obligated to purchase
the price at the current stock price if the buyer exercises their right to do so.

−𝐶𝐸(𝑆, 𝑡) = −max(0, 𝑆 − 𝐸).

People who short calls are typically very knowledgeable in quantitative trading as the potential
for loss is significant. They hope that the stock price decreases so that they can repurchase the
stock at a lower price (since the option will expire worthless). Otherwise, if it goes above 𝐸, the
buyer can choose to buy the stock 𝑆 at price 𝐸 and they must buy at the current price 𝑆. This can
yield unlimited loss for the seller. The maximum profit is the premium.

One can easily observe that the portfolio value for a
short call is the reflection of a long call along the 𝑥-
axis.

Definition 2.4. Longing a put option means you have the obligation to sell the stock at the strike
price.

𝑃𝐸 = max(0, 𝐸 − 𝑆).

One expects the stock price to go down and profit when the stock price is less than the stirke price
(because you own the right to sell a cheaper stock for a greater price). The maximum profit is the
strike price minus the premium and the maximum loss is the premium.

Judging by the graph, we want to let the option expire
worthless if 𝑆 ≥ 𝐸. For 𝑆 < 𝐸, we can sell the stock at
the strike price = profit!

Definition 2.5. Shorting a put means you are obligated to buy the stock at the strike price if the
buyer exercises that right.

−𝑃𝐸 = −max(0, 𝐸 − 𝑆)

You are expecting the stock price to go up and profit when the stock price is greater than the
strike price (so the option expires worthless). On the other hand, if it is less tan the strike price,
then the buyer will exercise the option and you must buy the stock at the underlying strike price.
The maximum loss is the cost of the strike price and maximum profit is the premium.

11
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As with long and short calls, the graph of a short put is
the reflection of a long put along the 𝑦-axis.

2.2 Constructing a Portfolio
We have overviewed the four main types of options pricing. In general, we can express any
portfolio as a linear combination of these. Before we proceed, let us go over general notation. For
puts and calls, we express them as 𝐶𝐸 , 𝑃𝐸, where 𝐸 is the underlying strike price of the option. We
often define portfolios for an asset as one with calls and puts for multiple strike prices. The next
example will highlight this type of portfolio:

Definition 2.6. Long strangles are the linear combination of longing a put at strike price 𝐸1 and
longing a call at a different strike price 𝐸2.

Portfolio Value = 𝑃𝐸1 + 𝐶𝐸2 .

Long Strangles are another safe portfolio; our loss is restricted to the two premiums we paid for.
Investors profit from long strangles when the stock falls below 𝐸1 or above 𝐸2.

Example 2.7.

We continue with a more complicated example. Below is a portfolio with multiple strike prices
and the corresponding portfolio value at expiration:
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First, we will describe the portfolio using only call options. The numbers in parentheses indicate
the slopes of each line in our piecewise-defined graph. This is important in keeping track of the
changes in slope as the stock price increases (or decreases).

1. From 0 ≤ 𝑆 ≤ 50, the slope is zero. No call options are bought in this interval.
2. From 50 ≤ 𝑆 ≤ 60, the slope is −6. At this point the graph resembles that of shorting 6 calls

with a strike price of $50. For every dollar the stock rises above $50, we are losing $6. If our
portfolio ended here, we could potentially suffer an infinite loss, as seen from the blue dashed
line pointing downward.

3. A wise investor would not let this happen. Therefore, they buying 6 call options at the strike
price $60. While we are still losing money from shorting 𝐶50, we are gaining money from 𝐶60 if
the stock price rises above $60. Hence, the $6 lost for every dollar increase in stock from
shorting the previous option is offset by the $6 gained for every dollar increase from calling
this new option. The slopes cancel out as seen by the blue dashed lines.

4. Here, the portfolio value goes up, which is only achieved by longing 4 call options, this time at
strike price $80. We earn $4 for each dollar increase in stock.

5. From 100 ≤ 𝑆 ≤ 110., the slope starts to flatten, which implies that we are shorting some call
options. Since the slope decreases from 4 to 1, we are shorting 3 call options at the strike price
$100.

6. The slope returns to zero, so we are shorting a call option at strike price $110. Notice again
how the slopes cancel out. This concludes the portfolio.

To describe this using notation, one would write

Portfolio Value = −6𝐶50 + 6𝐶60 + 4𝐶80 − 3𝐶100 − 𝐶110.

Similarly, we can describe the same portfolio using only puts. However, we work right to left as
puts derive value when stock prices go down. After going through each step, we actually find
that the two portfolios look very similar. We describe the portfolio with only puts as

Portfolio Value = −𝑃110 − 3𝑃100 + 4𝑃80 + 6𝑃60 − 6𝑃50.

13
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The similarity is heavily tied to a principle called Put-Call Parity, which we will define later.

While we can describe portfolios with only calls and only puts, using a combination of calls and
puts will optimize the portfolio, or be the cheapest. First, we look at the following definition:

Definition 2.8. The intrinsic value of an option is measured relative to underlying stock price 𝑆 at
any time. We say an option is
• Out of the money if the option is worth something. This is the case if 𝑆 > 𝐸 for calls and 𝑆 < 𝐸 for

puts.
• At the money 𝑆 = 𝐸 for both calls and puts.
• In the money if it is rendered worthless. This is the case if 𝑆 < 𝐸 for calls and 𝑆 > 𝐸 for puts.

Example 2.9. When optimizing our portfolio, we obviously want only out of the money options.
For example, if today’s stock is $70, we only use puts for options with strike prices less than $70
and only calls for options with strike prices greater than $70. Using the portfolio from the previous
example, we have the optimized portfolio

Portfolio Value = −6𝑃50 + 6𝑃60 + 4𝐶80 − 3𝐶100 − 𝐶110.

A word of caution: The portfolio we analyzed is by no means a representation of those that we
observe in the real world. In fact, they are far more complicated and composed of many more
options and stocks are always changing; they hardly ever remain flat.

Before relating calls and puts, we must introduce how money devalues over time.

Theorem 2.10. The discounted present value of money at time 𝑡 is given by

𝑀(𝑡) = 𝐸𝑒−𝑟(𝑇−𝑡).

Proof. Let the change in money 𝑑𝑀 be modeled by the differential equation.

𝑑𝑀 = 𝑟𝑀𝑑𝑡

Recall how this differential equation models exponential growth. Then,

𝑑𝑀

𝑀
= 𝑟𝑑𝑡 ⇐⇒

∫
𝑑𝑀

𝑀
= 𝑟

∫
𝑑𝑡

Let 𝐸 = 𝑀(𝑇). Then,∫ 𝐸

𝑀(𝑡)

𝑑𝑀

𝑀
= 𝑟

∫ 𝑇

𝑡

𝑑𝑡 ln(𝑀)|𝐸
𝑀(𝑡) = ln

(
𝐸

𝑀(𝑡)

)
= 𝑟(𝑇 − 𝑡)

Rearranging and exponentiating gives

𝑀(𝑡) = 𝐸𝑒−𝑟(𝑇−𝑡).

□

14
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Example 2.11. A person has money withdrawn from his savings account to be placed in his
checking account at a continuous fixed basis at a rate of $1,000 a year. This person started with
$20,000 placed in the savings account that has a 5% interest. How much will be in the savings
account in one year?

The differential equation that satisfies this scenario is

𝑑𝑀 =

(
𝑀 − 1000

𝑟

)
𝑟𝑑𝑡

Continue with the derivation as we did for the proof in the Theorem∫
𝑑𝑀

𝑀 − 1000
𝑟

= 𝑟𝑑𝑡 ⇐⇒
∫ 𝑀(1)

𝑀(0)

𝑑𝑀

𝑀 − 1000
𝑟

= 𝑟

∫ 1

0
𝑑𝑡

Let 𝑢 = 𝑀 − 1000
𝑟 . Then, 𝑑𝑢 = 𝑑𝑀 and∫ 𝑀(1)− 1000

𝑟

𝑀(0)− 1000
𝑟

𝑑𝑢

𝑢
= 𝑟

∫ 1

0
𝑡𝑑𝑡

ln
(
𝑀(1) − 1000

𝑟

)
− ln

(
𝑀(0) − 1000

𝑟

)
= 𝑟

Use properties of logarithms:

ln

(
𝑀(1) − 1000

𝑟

𝑀(0) − 1000
𝑟

)
= 𝑟 ⇐⇒

𝑀(1) − 1000
𝑟

𝑀(0) − 1000
𝑟

= 𝑒𝑟

Rearrange to solve for 𝑀(1):

𝑀(1) =
(
𝑀(0) − 1000

𝑟

)
𝑒𝑟 + 1000

𝑟
= $20, 000.

The differential equation is derived by taking your current amount of money 𝑀 minus the with-
drawal rate per year 1000

𝑟 , compounded by the current interest rate 𝑟.

Theorem 2.12. Let 𝑆 be the current stock price, 𝐶𝐸(𝑆, 𝑡) and 𝑃𝐸(𝑆, 𝑡) be call and put options for a strike
price 𝐸, and 𝐸𝑒−𝑟(𝑇−𝑡) be the discounted present value of the strike price. For two portfolios (identical payoff
at expiration) without arbitrage,

𝑆 + 𝑃𝐸(𝑆, 𝑡) = 𝐶𝐸(𝑆, 𝑡) + 𝐸𝑒−𝑟(𝑇−𝑡).

This is Put-Call Parity

What happens if Put-Call Parity is violated? Then arbitrage exists!

15
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• If 𝑆 + 𝑃𝐸(𝑆, 𝑡) > 𝐶𝐸(𝑆, 𝑡) + 𝐸𝑒−𝑟(𝑇−𝑡), sell (𝑆 + 𝑃𝐸), buy 𝐶𝐸 and deposit 𝐸𝑒−𝑟(𝑇−𝑡) in the bank, and
immediately pocket the remaining sum as an arbitrage profit.

• If 𝐶𝐸(𝑆, 𝑡) + 𝐸𝑒−𝑟(𝑇−𝑡) > 𝑆 + 𝑃𝐸(𝑆, 𝑡), buy (𝑆 + 𝑃𝐸), sell 𝐶𝐸 and borrow 𝐸𝑒−𝑟(𝑇−𝑡) from the bank,
and immediately pocket the remaining sum as an arbitrage profit.

Example 2.13. Suppose that, for an expiration date of a year from now (with 5% interest) that
𝐶60(70, 𝑡) = $9 and 𝑃60(70, 𝑡) = 4. How can you use this information to make some money?

Apply the Put-Call Parity equation and determine if it is violated:

𝑆 + 𝑃𝐸(𝑆, 𝑡) = 70+ 𝑃60(70, 𝑡) = 74, 𝐶𝐸(𝑆, 𝑡) + 𝐸𝑒−𝑟(𝑇−𝑡) = 𝐶60(70, 𝑡) + 60𝑒−0.05 = 9+ 57.07 ≈ 66.07.

Here the left side is larger and so there exists an arbitrage opportunity. Here, we want to (1) sell at
the current stock price plus the put option for $74, (2) buy the call option at $9 and deposit $57.07
into the bank, (3) pocket the remaining sum, and (4) wait until expiration.

Example 2.14. Suppose a particular stock is trading at $180. Consider a portfolio of the following
stock options that consists of the following components, all with one year until expiration:
• Long 1 call option with a strike price of $80.
• Short 1 put option with a strike price of $80.
• Short 1 call option with a strike price of $200.
• Long 1 put option with a strike price of $200.
Assuming no arbitrage in the market exists and the risk-free annual interest rate is 2%, what must
be the value of this options portfolio today?

For the 𝐸 = $80 options, we are longing one call and shorting one put. Manipulating the Put-Call
Parity equation, the profit is modeled by

𝐶80 − 𝑃80 = 𝑆 − 𝐸𝑒−𝑟(𝑇−𝑡) = 180 − 80𝑒−0.02 = $101.58.

For the 𝐸 = $200 options, we are longing one put and shorting one call. Manipulating the Put-Call
Parity equation, the profit is modeled by

𝑃200 − 𝐶200 = 𝐸𝑒−𝑟(𝑇−𝑡) − 𝑆 = 200𝑒−0.02 − 180 = $16.04.

Sum these two to obtain a net present value of $117.62.

16
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3 Probability and Calculus Review
We review two ideas that will help us derive a mathematical model for option pricing.

3.1 Probability Review Part II: Cumulative Distribution Function
Recall from earlier that the a probability distribution function (PDF) is a function 𝑓 (𝑥) that satisfies∫ ∞

−∞
𝑓 (𝑥)𝑑𝑥 = 1.

A cumulative distribution function 𝐹(𝑡) is the anti-derivative of the PDF.

𝐹(𝑡) = 𝑃(𝑋 ≤ 𝑡) =
∫ 𝑡

−∞
𝑓 (𝑥)𝑑𝑥

We can derive a PDF by differentiating the CDF using the Fundamental Theorem of Calculus
(FTC) and the Chain Rule.

𝑑

𝑑𝑡

∫ ℎ(𝑡)

𝑔(𝑡)
𝑓 (𝑥)𝑑𝑥 = 𝐹(ℎ(𝑡)) − 𝐹(𝑔(𝑡)) =⇒ 𝑑

𝑑𝑡

[
𝐹(ℎ(𝑡)) − 𝐹(𝑔(𝑡))

]
= 𝐹′(ℎ(𝑡))ℎ′(𝑡) − 𝐹′(𝑔(𝑡))𝑔′(𝑡)

By the FTC, 𝐹′(𝑡) = 𝑓 (𝑡) and so

𝑑

𝑑𝑡

∫ ℎ(𝑡)

𝑔(𝑡)
𝑓 (𝑥)𝑑𝑥 = 𝑓 (ℎ(𝑡))ℎ′(𝑡) − 𝑓 (𝑔(𝑡))𝑔′(𝑡)

Additionally, from Definition 1.10, we defined an integral representation for standard normal
distribution for 𝑧, letting 𝑧 =

𝑋−𝜇
𝜎 . We can rewrite any normal distribution as

1√
2𝜋

∫ ∞

−∞
𝑒−

1
2 ( 𝑥−𝜇

𝜎 ).

Now suppose we have a standard normal random variable 𝑋 ∼ 𝒩(𝜇, 𝜎2) and a random variable
𝑌 = 𝑓 (𝑋). Can we derive a PDF for 𝑌?
• Write out the PDF for 𝑋.
• Define 𝑔(𝑋) ≤ 𝑌 ≤ ℎ(𝑋) as the bounds for your new integral.
• Find an integral representation for the CDF for 𝑌 from the known PDF for 𝑋.
• Differentiate the CDF for 𝑌 to find the PDF for 𝑌.

Example 3.1. Let 𝑌 = 𝑋4 where 𝑋 ∼ 𝒩(0, 4). Find the PDF for 𝑌.

We have that 𝜇 = 0, 𝜎𝑌 = 2. The PDF for 𝑋 is given by

𝑓 (𝑋) = 1
2
√

2𝜋
𝑒−

𝑋2
8 =⇒ 𝐹(𝑥) = 𝑃(𝑥 ≤ 𝑋) = 1

2
√

2𝜋

∫ 𝑥

−∞
𝑒−

𝑡2
8 𝑑𝑡.
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The CDF for 𝑌 is 𝐹(𝑌) = 𝑃(𝑦 ≤ 𝑌) = 𝑃(𝑋4 ≤ 𝑌) = 𝑃(− 4√
𝑌 ≤ 𝑥 ≤ 4√

𝑌). As such,

𝐹(𝑌) = 1
2
√

2𝜋

∫ 4√
𝑌

− 4√
𝑌

𝑒−
𝑥2
8 𝑑𝑥 =⇒ 𝑑

𝑑𝑌
𝐹(𝑌) = 𝑓 (𝑌) =

(
1

2
√

2𝜋
𝑒−

√
𝑌
8

)
· 1

4𝑌
− 3

4 +
(

1
2
√

2𝜋
𝑒−

√
𝑌
8

)
· 1

4𝑌
− 3

4 .

Hence the PDF for 𝑌 is given by

𝑓 (𝑌) = 1
4
√

2𝜋
𝑌− 3

4 𝑒−
√
𝑌
8 .

3.2 Taylor Series
We can use a Taylor Series to construct a polynomial approximation/representation for any
function. Replace an actual function 𝑓 (𝑥) with an approximating polynomial centered at 𝑥 = 𝑎.
Then, the Taylor Series representation for 𝑓 (𝑥) is

𝑓 (𝑥) ≈ 𝑓 (𝑎) +
𝑛∑
𝑗=1

𝑓 (𝑗)(𝑎)
𝑗! (𝑥 − 𝑎)𝑗

The approximation for 𝑓 (𝑥) is valid when |𝑥 − 𝑎| is small. That is to say, the Taylor Series will
converge only if the distance between 𝑥 and 𝑎 is under a certain threshold, which will vary
depending on the function you want to approximate.

Example 3.2. Construct a fifth order Taylor Series for 𝑓 (𝑥) = sin(𝑥) centered about 𝑥 = 𝜋. Use this
to approximate sin(3).

The derivatives of sin(𝑥) alternate between ± sin(𝑥) and ± cos(𝑥). Since sin𝜋 = 0, we only care
about when the derivative is cos 𝑥. Since we only care about up to the fifth derivative,

𝑑

𝑑𝑥𝑛
sin(𝜋) =


0 if 𝑛 = 0, 2, 4
1 if 𝑛 = 1, 5
−1 if 𝑛 = 3

Therefore, the fifth order Taylor Series of sin(𝑥) is

𝑓 (𝑥) ≈ (𝑥 −𝜋) − 1
6 (𝑥 −𝜋)3 + 1

120 (𝑥 −𝜋)5 sin(3) ≈ −
(
(3 − 𝜋) − 1

6 (3 − 𝜋)3 + 1
120 (3 − 𝜋)5

)
≈ 0.1411

Here we use the fact that sin(−𝑥) = − sin(𝑥). The graphs of both are shown on the next page:

18
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The approximating polynomial converges on (𝜋, 2𝜋).

We can extend a Taylor Series to multiple dimensions. We will look at a Taylor Series in two
dimensions. Recall that a function of two variables 𝑓 (𝑥, 𝑦) has partial derivatives. 𝜕 𝑓

𝜕𝑥 is the
derivative of 𝑓 with respect to 𝑥, treating 𝑦 as a constant. Likewise, 𝜕 𝑓

𝜕𝑦 is the derivative of 𝑓 with
respect to 𝑦, treating 𝑥 as a constant. The coefficients of a Taylor Series for a function 𝑓 (𝑥, 𝑦)
centered about 𝑥 = 𝑘, 𝑦 = ℎ are

𝑏𝑛,𝑚 =
𝜕 𝑓

𝜕𝑥𝑛
𝜕 𝑓

𝜕𝑦𝑚

����
(𝑥,𝑦)=(𝑘,ℎ)

.

For a second-order Taylor Series representation 𝑓 (𝑥, 𝑦) centered around (𝑘, ℎ), the approximating
polynomial is written as

𝑓 (𝑥, 𝑦) ≈ 𝑏0,0 + 𝑏1,0(𝑥 − ℎ) + 𝑏0,1(𝑦 − 𝑘) + 𝑏1,1(𝑥 − ℎ)(𝑦 − 𝑘) + 1
2𝑏2,0(𝑥 − 𝑘)2 + 1

2𝑏0,2(𝑦 − ℎ)2

More generally, any 2D Taylor Series can be described as

∞∑
𝑛=1

∞∑
𝑚=1

𝑏𝑛,𝑚(𝑥 − 𝑘)𝑛(𝑦 − ℎ)𝑚
𝑛!𝑚! .

Example 3.3. Find the second-order Taylor-Series approximation for 𝑓 (𝑥, 𝑦) = 𝑥2 cos(𝑦) about (1, 0).

We have that 𝜕 𝑓 (1,0)
𝜕𝑦 = 0, so 𝑏0,1 = 𝑏1,1 = 0. We compute the remaining partial derivatives

𝑏0,0 = 𝑓 (1, 0) = 1, 𝑏1,0 = 2𝑥 cos(𝑦)|(1,0) = 2, 𝑏2,0 = 2 cos(𝑦)|(1,0) = 2, 𝑏(0,2) = −𝑥2 cos(𝑦)|(1,0) = −1

19



Ryan Gomberg Math 176 Notes (Math of Finance) Page 20 of 51

Therefore, the second-order Taylor Series centered for 𝑓 (𝑥, 𝑦) around (1, 0) is

𝑓 (𝑥, 𝑦) ≈ 1 + 2(𝑥 − 1) + (𝑥 − 1)2 − 1
2 𝑦

2

Suppose we wanted to approximate 𝑓 (1.1, 0.1), then

𝑓 (1.1, 0.1) ≈ 1 + 2(0.1) + (0.1)2 − 1
2 (0.1)

2 ≈ 1.205.

The actual value is roughly 1.21.
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4 Geometric Brownian Motion and Modeling Stock Prices

4.1 Motivation
Now, we consider a more realistic scenario: what if we make a stronger assumption that stock
prices do not follow a deterministic model, but rather a random one? Suppose that, at any point
in time, the stock price is equally likely to increase as it is to decrease. Or, more precisely,

𝑃

(
𝜕𝑆

𝜕𝑡

)
= 𝑃

(
𝜕𝑆

𝜕𝑡

)
=

1
2 .

Mathematically, we are saying that the probability for the stock price to increase to equal to the
probability of it decreasing. For more intuition, let us use a fair coin. If the coin lands on heads,
the stock price increases by a dollar. For tails, it decreases. If we flip it once, there are 2
outcomes−𝑆 increases or decreases by a dollar, each with equal probability. What if we flipped it
100 times? There would now be 2100 different outcomes, or paths that the stock price could follow.
A model that measures paths stochastically, or by probability, is known as a random walk.

4.2 Random Walks
The idea introduced earlier is the foundation of modeling stock prices.

Example 4.1. Below is an example of a simulation using the same example, instead letting the
stock price increase/decrease by 10 cents.

Here we have 100 different paths. Each one represents one of the 1.268 × 1030 different outcomes
for the stock to possibly follow. Because each iteration, or time step, has one of two outcomes, the
Central Limit Theorem tells that a random walk roughly follows a normal distribution!
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As we expect, roughly 65% of the models keep the stock price 1 dollar above or below from where it
started and 94% keep the stock 2 dollars above or below from where it started. We can think of the
outliers (the green lines in the random walk iterations) as the maximum spread of the distribution.
Therefore, this model can be described as a normal distribution with mean 0 and variance 𝜎2

𝑆
.

4.3 Geometric Brownian Motion
Let us take one step further. While we showed that random walks undoubtedly follow a normal
distribution, how can we mathematically model them? This will take some time, but first we
introduce a common stochastic model:

Definition 4.2. Let 𝑆 be the stock price, 𝜇 be the average annual growth of the stock price (drift),
and 𝜎 as the standard deviation of annual returns (volatility). Then, the stock price follows a
closed-form model given by:

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝑤 ⇐⇒ 𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑤.

The defined model is called a stochastic differential equation (SDE).

We decompose each component of the model:
• 𝜇𝑑𝑡 is a deterministic component, or one without randomness.
• 𝜎𝑑𝑤 is a random component, where 𝑑𝑤 is a random number drawn from a normal distribution

using the deterministic components; it has mean 𝜇 and variance 𝑑𝑡.
• After a small increase in time 𝑑𝑡, the stock price increases to 𝑆 + 𝑑𝑆.

To prepare ourselves for future derivations, let us consider (𝑑𝑆)2.

(𝑑𝑆)2 = (𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑤)2 = 𝜇2𝑆2(𝑑𝑡)2 + 2𝜇𝜎𝑆2𝑑𝑡𝑑𝑤 + 𝜎2𝑆2(𝑑𝑤)2.
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with 𝑑𝑤 ∼ 𝒩(0, 𝑑𝑡). This implies that 𝐸[𝑑𝑤] = 0. As for Var(𝑑𝑤):

Var(𝑤𝑡+𝑑𝑡 − 𝑤𝑡) = Var(𝑤𝑡+𝑑𝑡) − 2Cov(𝑤𝑡+𝑑𝑡 , 𝑤𝑡) + Var(𝑤𝑡).

Since 𝑑𝑤 follows a normal distribution with variance 𝑑𝑡, we can integrate to obtain

𝑤𝑡 =

∫ 𝑡

0
𝑑𝑠 =⇒ 𝜎𝑤𝑡 = 𝑡.

Likewise, Var(𝑤𝑡+𝑑𝑡) = 𝑡 + 𝑑𝑡. The covariance

Cov(𝑤𝑡+𝑑𝑡 , 𝑤𝑡) = 𝐸[𝑤𝑠𝑤𝑡] − 𝐸[𝑤𝑠]𝐸[𝑤𝑡] = 𝐸[𝑤𝑠𝑤𝑡].

Here 𝑠, 𝑠 < 𝑡 and is another random variable such that 𝑤𝑡 = 𝑤𝑠 + (𝑤𝑡 − 𝑤𝑠). Then,

𝐸[𝑤𝑠𝑤𝑡] = 𝐸[𝑤𝑠(𝑤𝑠 + (𝑤𝑡 − 𝑤𝑠))] = 𝐸[𝑤2
𝑠 ] + 𝐸[𝑤𝑠(𝑤𝑡 − 𝑤𝑠)] = 𝐸[𝑤2

𝑠 ] + 𝐸[𝑤𝑠]𝐸[𝑤𝑡 − 𝑤𝑠].

Since 𝐸[𝑤𝑠] = 0, 𝐸[𝑤𝑠𝑤𝑡] = 𝐸[𝑤2
𝑠 ] = 𝑠. Therefore, Cov(𝑤𝑡+𝑑𝑡 , 𝑤𝑡) = 𝑡 and

Var(𝑑𝑤) = (𝑡 + 𝑑𝑡) − 2𝑡 + 𝑡 = 𝑑𝑡.

In the process, we also proved that Var(𝑑𝑤) = 𝐸[(𝑑𝑤)2] = 𝑑𝑡. So, provoking the limit 𝑑𝑡 → 0 gives
𝑑𝑡𝑑𝑤 = 0 and (𝑑𝑤)2 → 𝑑𝑡.

We summarize our findings by describing how the probabilities 𝑃(𝑑𝑤), 𝑃(𝑑𝑡𝑑𝑤), and 𝑃((𝑑𝑤)2)
behave.
• 𝑃(𝑑𝑤) follows a normal distribution of mean 0 and variance 𝑑𝑤: 𝑃(𝑑𝑤) ∼ 𝒩(0, 𝑑𝑡).
• 𝑃(𝑑𝑤𝑑𝑡) follows a normal distribution of mean 0 and variance 𝑑𝑤𝑑𝑡: 𝑃(𝑑𝑤𝑑𝑡) ∼ 𝒩(0, 𝑑𝑤𝑑𝑡).
• 𝑃((𝑑𝑤)2) follows a normal distribution of mean 𝑑𝑡 and variance 2(𝑑𝑡)2: P((𝑑𝑤)2) ∼ 𝒩(0, 2(𝑑𝑡)2).
The derivation for Var((𝑑𝑤)2) uses the fact that 𝐸[𝑋4] = 3𝜎4 for a normal distribution. So,
𝐸[(𝑑𝑤)4] = 3(𝑑𝑡)2 and Var(𝑑𝑤)2 = 𝐸[(𝑑𝑤)4] − (𝐸[(𝑑𝑤)2])2 = 2(𝑑𝑡)2.

Here is a side-by-side comparison of the three probabilities, following the distributions
mentioned earlier. Note that (𝑑𝑤)2 will generally be skewed to the left because 𝑑𝑡 is almost always
very small. The variance 2(𝑑𝑡)2 is consequently also really small. Improving the spread often
involves a transformation, with a logarithmic transformation as the most common.

Relating back to the model, we have that 𝑑𝑆 = 𝜎2𝑆2𝑑𝑡.
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4.4 Ito’s Lemma

Theorem 4.3. Let 𝑉 govern the price of a stock 𝑆 at a given time 𝑡. Then, the form of Ito’s Lemma for
𝑑𝑉(𝑆, 𝑡) is

𝑑𝑉 = 𝜎𝑆
𝜕𝑉

𝜕𝑆
𝑑𝑤 +

(
𝜇𝑆

𝜕𝑉

𝜕𝑆
+ 𝜕𝑉

𝜕𝑡
+ 1

2𝜎
2𝑆2 𝜕

2𝑉

𝜕𝑆2

)
𝑑𝑡.

Proof. Consider a 2D-Taylor Series of order 2 for 𝑉 centered around (𝑆0 , 𝑡0). Then

𝑉(𝑆, 𝑡) ≈ 𝑉(𝑆0 , 𝑡0) +
𝜕𝑉(𝑆0 , 𝑡0)

𝜕𝑆
(𝑆 − 𝑆0) +

𝜕𝑉(𝑆0 , 𝑡0)
𝜕𝑡

(𝑡 − 𝑡0) +
(
1
2

)
𝜕2𝑉(𝑆0 , 𝑡0)

𝜕𝑆2 (𝑆 − 𝑆0)2

+𝜕2𝑉(𝑆0 , 𝑡0)
𝜕𝑆𝜕𝑡

(𝑆 − 𝑆0)(𝑡 − 𝑡0) +
(
1
2

)
𝜕2𝑉(𝑆0 , 𝑡0)

𝜕𝑡2 (𝑡 − 𝑡0)2 + · · ·

Let 𝑑𝑉 = 𝑉(𝑆, 𝑡) −𝑉(𝑆0 , 𝑡0) where 𝑑𝑆 = 𝑆 − 𝑆0 and 𝑑𝑡 = 𝑡 − 𝑡0. Then,

𝑑𝑉 =
𝜕𝑉

𝜕𝑆
𝑑𝑆 + 𝜕𝑉

𝜕𝑡
𝑑𝑡 +

(
1
2

)
𝜕2𝑉

𝜕𝑆2 (𝑑𝑆)
2 + 𝜕2𝑉

𝜕𝑆𝜕𝑡
𝑑𝑆𝑑𝑡 +

(
1
2

)
𝜕2𝑉

𝜕𝑡2 (𝑑𝑡)2.

If we take the limit 𝑑𝑡 → 0, then (𝑑𝑡)2 becomes negligible and

𝑑𝑉 =
𝜕𝑉

𝜕𝑆
𝑑𝑆 + 𝜕𝑉

𝜕𝑡
𝑑𝑡 +

(
1
2

)
𝜕2𝑉

𝜕𝑆2 (𝑑𝑆)
2 + 𝜕2𝑉

𝜕𝑆𝜕𝑡
𝑑𝑆𝑑𝑡.

Substituting 𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑤 and (𝑑𝑆)2 = 𝜎2𝑆2𝑑𝑡 yields

𝑑𝑉 =
𝜕𝑉

𝜕𝑆
(𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑤) + 𝜕𝑉

𝜕𝑡
𝑑𝑡 +

(
1
2

)
𝜕2𝑉

𝜕𝑆2 (𝜎
2𝑆2𝑑𝑡) + 𝜕2𝑉

𝜕𝑆𝜕𝑡
(𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑤)𝑑𝑡.

=⇒ 𝑑𝑉 = 𝜎𝑆
𝜕𝑉

𝜕𝑆
𝑑𝑤 +

(
𝜇𝑆

𝜕𝑉

𝜕𝑆
+ 𝜕𝑉

𝜕𝑡
+ 1

2𝜎
2𝑆2 𝜕

2𝑉

𝜕𝑆2

)
𝑑𝑡.

□

4.5 The Stochastic Process for S(t)
Continuing from Ito’s Lemma, the trick is to let 𝑉 = ln 𝑆. Then we have the 𝜕𝑉

𝜕𝑆 = 1
𝑆 , 𝜕2𝑉

𝜕𝑆2 = − 1
𝑆2 ,

and 𝜕𝑉
𝜕𝑡 = 0. Rearranging and collecting terms gives:

𝑑𝑉 =

(
𝜇 − 1

2𝜎
2
)
𝑑𝑡 + 𝜎𝑑𝑤.

We begin to solve by integrating∫ 𝑡

0
𝑑𝑉 =

∫ 𝑡

0

(
𝜇 − 1

2𝜎
2
)
𝑑𝑡 +

∫ 𝑡

0
𝜎𝑑𝑤 =⇒

∫ 𝑡

0
𝑑(ln 𝑆(𝑇)) =

∫ 𝑡

0

(
𝜇 − 1

2𝜎
2
)
𝑑𝑡 +

∫ 𝑡

0
𝜎𝑑𝑤
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=⇒ ln 𝑆(𝑡) − ln 𝑆(0) =
(
𝜇 − 1

2𝜎
2
)
𝑡 + 𝜎(𝑤(𝑡) − 𝑤(0)).

We have that 𝑤(0) = 0, with probability one, almost everywhere. Moving ln 𝑆(0) and
exponentiating:

𝑆(𝑡) = 𝑆(0)𝑒(𝜇− 1
2 𝜎

2)𝑡+𝜎𝑤(𝑡).

If 𝑇 is the expiration date of an option, then

𝑆(𝑇)
𝑆(𝑡) = 𝑒(𝜇− 1

2 𝜎
2)(𝑇−𝑡)+𝜎(𝑤(𝑇)−𝑤(𝑡)).

Then, 𝑆(𝑇)
𝑆(𝑡) follows a lognormal distribution with mean

(
𝜇 − 1

2𝜎
2) (𝑇 − 𝑡) and variance 𝜎2(𝑇 − 𝑡). If

we move 𝑆(𝑡) to the right, then

ln(𝑆(𝑇)) ∼ 𝒩
(
ln 𝑆(𝑡) +

(
𝜇 − 1

2𝜎
2
)
(𝑇 − 𝑡), 𝜎2(𝑇 − 𝑡)

)
.

We write the log-normal probability distribution, 𝑓 (𝑆(𝑇)), as

𝑓 (𝑆(𝑇)) = 1
𝑆(𝑡)𝜎1

√
2𝜋

𝑒
− 1

2

(
ln[𝑆(𝑇)]−𝜇1

𝜎1

)2

.

where 𝜇1 = ln[𝑆(𝑡)] +
(
𝜇 − 1

2𝜎
2) (𝑇 − 𝑡) and 𝜎2

1 = 𝜎2(𝑇 − 𝑡).
The mode is the value for 𝑆(𝑇) that produces the maximum value for 𝑓 (𝑆(𝑇)).

𝑆(𝑇) = 𝑆(𝑡)𝑒(𝜇− 3
2 𝜎

2)(𝑇−𝑡).

An expression for the maximum value of 𝑓 (𝑆(𝑇)) as a function of 𝜇, 𝜎, (𝑇 − 𝑡) and 𝑆(𝑡) is obtained
by plugging in the mode:

max( 𝑓 (𝑆(𝑇))) = 1
𝜎𝑆(𝑡)

√
2𝜋(𝑇 − 𝑡)

𝑒(𝜎
2−𝜇)(𝑇−𝑡).

Recall from earlier that the mean of a distribution is the average of all values, or 𝐸[𝑋]. We define
the median 𝑀 as the 𝑋 satisfying 𝑃(𝑋 ≤ 𝑀) = 𝑃(𝑋 ≥ 𝑀) = 1

2 . The mode is given by the value
corresponding to the peak, or maximum, of the distribution. For a normal distribution, these
three values are equivalent due to its symmetry. However, for a lognormal distribution, these
measures of central tendency often differ from each other. More precisely,

Mean = 𝑆(0)𝑒𝜇𝑇 , Median = 𝑒(𝜇− 1
2 𝜎

2)𝑇 , Mode = 𝑆(0)𝑒𝜇𝑇 .

We can also rank each value through inequalities:

Mode < Median < Mean

This holds for any lognormal distribution.
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Example 4.4. Let 𝑆(𝑡) = $40, 𝜎 = 0.2, 𝑇 = 1 year, 𝑡 = 0.5, and 𝜇 = 0.16. Find the most likely value
for 𝑓 (𝑆(𝑇)).
Plug the known values into the expression
for max( 𝑓 (𝑆(𝑇))).

max( 𝑓 (𝑆(𝑇))) = 1
40(0.16)

√
2𝜋

𝑒((0.2)
2−0.16)(0.5)

≈ 0.066.

We can also find the mode corresponding to
the maximum value:

Mode = 40𝑒(0.16− 3
2 (0.2)2)(0.5) ≈ 42.05.

This really says that the most likely stock
price is 𝑆(𝑇) = $42.05 with probability 6.6%.

This is also easily verified through the graph. The mode, or the pink line, gives us the maximum
probability for 𝑓 (𝑆(𝑇)). As we observe, the mean/median/mode all differ due to the skewed
nature of a lognormal distribution.

It is common to get the distributions confused, especially when modeling stocks follow two
different types of distributions. Generally, when the returns on a stock ln(𝑆(𝑇)) follow a normal
distribution, the stock prices 𝑆(𝑇) follow a lognormal distribution. This is valid under a Geometric
Brownian Motion model.
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5 The Black-Scholes Equation
We now have the knowledge of basic options and Geometric Brownian Motion in our toolkit.
How can we extend this idea to develop a dynamic model for modeling option prices? It wasn’t
until 1973 that a mathematical model was published and widely accepted in the financial field.
Fischer Black and Myron Scholes cleverly used the idea of random walks and Brownian Motion to
their advantage. Through a series of simple tricks and computations, the renowned Black-Scholes
Equation came to fruition.

5.1 The Equation
What we will notice is that the Black-Scholes Equation closely resembles the Ito’s Lemma
representation of option prices with some slight modifications.

Theorem 5.1. The option price 𝑆 at a specified time 𝑡, given by 𝑉(𝑆, 𝑡), satisfies the second-order partial
differential equation

𝜕𝑉

𝜕𝑡
+ 1

2𝜎
2𝑆2 𝜕

2𝑉

𝜕𝑆2 + 𝑟𝑆
𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0.

Proof. To derive the equation, we first recall the result of Ito’s Lemma as stated in Theorem 4.3.

𝑑𝑉 = 𝜎𝑆
𝜕𝑉

𝜕𝑆
𝑑𝑤 +

(
𝜇𝑆

𝜕𝑉

𝜕𝑆
+ 𝜕𝑉

𝜕𝑡
+ 1

2𝜎
2𝑆2 𝜕

2𝑉

𝜕𝑆2

)
𝑑𝑡.

Now, consider a portfolio Π where you buy one option 𝑉 and sell Δ units of stock. The following
relationships fall naturally: {

Π = 𝑉 − 𝑆Δ

𝑑Π = 𝑑𝑉 − (𝑑𝑆)Δ
Using the SDEs for 𝑑𝑉 (4.3) and 𝑑𝑆 (4.2):

𝑑Π = 𝜎𝑆

(
𝜕𝑉

𝜕𝑆
− Δ

)
𝑑𝑤 +

(
𝜇𝑆

𝜕𝑉

𝜕𝑆
− 𝜇𝑆Δ + 𝜕𝑉

𝜕𝑡
+ 1

2𝜎
2𝑆2 𝜕

2𝑉

𝜕𝑆2

)
𝑑𝑡

We can choose Δ = 𝜕𝑉
𝜕𝑆 to eliminate the stochastic/random, or the “risk," component. This makes

the portfolio value completely deterministic:

𝑑Π =

(
𝜕𝑉

𝜕𝑡
+ 1

2𝜎
2𝑆2 𝜕

2𝑉

𝜕𝑆2

)
𝑑𝑡.

With the risk gone, the portfolio must offer the risk-free rate of return to ensure no arbitrage is
possible. This is given by the exponential differential equation (for compounding of money)

𝑑Π

Π
= 𝑟𝑑𝑡 =⇒ 𝑑Π = 𝑟Π𝑑𝑡.

Plug in what we defined for Π and 𝑑Π earlier:(
𝜕𝑉

𝜕𝑡
+ 1

2𝜎
2𝑆2 𝜕

2𝑉

𝜕𝑆2

)
𝑑𝑡 = 𝑟(𝑉 − 𝑆Δ)𝑑𝑡.
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The 𝑑𝑡 terms will cancel. All we need to do is move each term to one side to arrive at the Black-
Scholes equation:

𝜕𝑉

𝜕𝑡
+ 1

2𝜎
2𝑆2 𝜕

2𝑉

𝜕𝑆2 + 𝑟𝑆
𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0.

□

The Black-Scholes equation introduces an approach called delta hedging. As the name suggests, it
chooses a Δ that minimizes or completely eradicates risk. In the case of the Black-Scholes
Equation, we were able to find a Δ that achieves this goal.

Due to preliminary conditions such as delta hedging, Black-Scholes equation can be found as
“restrictive," or not always representative of real-world scenarios. The model suggests a constant
rate of return and volatility, which is almost never true. Nonetheless, Black-Scholes is currently
the closest thing we have to a perfect model−it undoubtedly works. When we define the
closed-form solutions for Calls and Puts in the next section, we can plug them in and find that
they, indeed, satisfy the PDE.

Example 5.2. What we introduced in Theorem 5.1 is the “general" form of the Black-Scholes
Equation. However, we may choose different expressions for Δ and 𝑑𝑆. Suppose that we wanted
to have our portfolio satisfy the differential equation 𝑟𝑑Π𝑑𝑡 = 𝑟(𝑉 − 𝑆Δ)𝑑𝑡 + 𝑑∗𝑆Δ𝑑𝑡, where 𝑑∗ is a
fixed constant. What is the resulting Black-Scholes equation?

Up to choosing Δ, the steps are exactly the same. All we need to do is to use the modified equation
for Δ: (

𝜕𝑉

𝜕𝑡
+ 1

2𝜎
2𝑆2 𝜕

2𝑉

𝜕𝑆2

)
𝑑𝑡 = 𝑟

(
𝑉 − 𝑆

𝜕𝑉

𝜕𝑆

)
+ 𝑑∗𝑆

𝜕𝑉

𝜕𝑆
.

Rearranging,
𝜕𝑉

𝜕𝑡
+ 1

2𝜎
2𝑆2 𝜕

2𝑉

𝜕𝑆2 + 𝑟𝑆
𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 𝑑∗𝑆

𝜕𝑣

𝜕𝑆
.

The final form of the “new" Black-Scholes equation is

𝜕𝑉

𝜕𝑡
+ 1

2𝜎
2𝑆2 𝜕

2𝑉

𝜕𝑆2 + (𝑟 − 𝑑∗)𝑆 𝜕𝑉
𝜕𝑆

− 𝑟𝑉 = 0.

Example 5.3. This time, let 𝑑𝑆 be given by 𝑑𝑆 = 5𝑑𝑡 + 6𝑆2𝑑𝑤. What is the resulting Black-Scholes
equation?
Given that (𝑑𝑆)2 = 36𝑆4𝑑𝑡, we have the form of Ito’s Lemma:

𝑑𝑉 = 6𝑆2 𝜕𝑉

𝜕𝑆
𝑑𝑤 +

(
5𝜕𝑉
𝜕𝑆

+ 𝜕𝑉

𝜕𝑡
+ 18𝑆4 𝜕

2𝑉

𝜕𝑆2

)
𝑑𝑡

Let Π = 𝑉 − 𝑆Δ, then 𝑑Π = 𝑑𝑉 − Δ𝑑𝑆 and

𝑑Π = 6𝑆2 𝜕𝑉

𝜕𝑆
𝑑𝑤 +

(
5𝜕𝑉
𝜕𝑆

+ 𝜕𝑉

𝜕𝑡
+ 18𝑆4 𝜕

2𝑉

𝜕𝑆2

)
𝑑𝑡 − (5𝑑𝑡 + 6𝑆2𝑑𝑤)Δ
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Setting Δ = 𝜕𝑉
𝜕𝑆 , we eliminate the random component and obtain

𝑑Π =

(
𝜕𝑉

𝜕𝑡
+ 18𝑆4 𝜕

2𝑉

𝜕𝑆2

)
𝑑𝑡 = 𝑟Π𝑑𝑡 = 𝑟

(
𝑉 − 𝑆

𝜕𝑉

𝜕𝑆

)
𝑑𝑡.

The corresponding Black-Scholes equation is therefore

𝜕𝑉

𝜕𝑡
+ 18𝑆4 𝜕

2𝑉

𝜕𝑆2 + 𝑟𝑆
𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0.

5.2 Solutions to the Black-Scholes Equation
While we will not explicitly derive the solution, the idea is to transform the equation into a
familiar PDE that has a closed-form solution, namely the heat equation, which has the standard
form

𝑢𝑡 = 𝑘𝑢𝑥𝑥 .

The solution to the heat equation requires finding a Fourier Series representation of the form

𝑢(𝑥, 𝑡) =
∞∑
𝑛=1

𝑏𝑛𝑒
−𝑘𝑛2𝑡 sin(𝑛𝑡).

𝑏𝑛 is a coefficient obtained through what is called a Sine Transform, which decomposes functions
as a series of sine waves.
The solution to the Black-Scholes Equation doesn’t quite have this form, but hopefully this serves
as a general intuition on how we connect Black-Scholes to more commonly used techniques in
PDE theory. What we will actually discover is that the solution to the Black-Scholes equation
incorporates a lot of working components.

Theorem 5.4. European Call and Put options, in the following form, satisfy the Black-Scholes equation.

𝐶𝐸(𝑆, 𝑡) = 𝑆𝒩(𝑑1) − 𝐸𝑒−𝑟(𝑇−𝑡)𝒩(𝑑2), 𝑃𝐸(𝑆, 𝑡) = 𝐸𝑒−𝑟(𝑇−𝑡)𝒩(−𝑑2) − 𝑆𝒩(−𝑑1)

where

𝑑1 =
ln

(
𝑆
𝐸

)
+

(
𝑟 + 1

2𝜎
2) (𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

, 𝑑2 =
ln

(
𝑆
𝐸

)
+

(
𝑟 − 1

2𝜎
2) (𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

and 𝒩 is the Gaussian normal distribution.

Before proceeding any further, we clean up with some notation:
• 𝑆 and 𝐸 are the stock and strike prices.
• 𝑟 is the prevailing risk-free rate.
• 𝜎 is the volatility, or the magnitude of stock fluctuations over time. It measures the degree of

uncertainty, or risk, in movements of the stock price.
• 𝑇 − 𝑡 is the time to expiration.
If we want to price a European call and put option using the Black-Scholes model, we need to
know the exact value of the above items.
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Example 5.5. Apple’s Stock Price on February 26, 2025 (Ticker: APPL) was $240. According to
the Black-Scholes Model, determine how one should price a call option if the strike price is $240,
risk-free rate is 5%, volatility is 20%, and time to expiration is 1 year.

First, compute the values for 𝑑1 and 𝑑2 using the given information.

𝑑1 =
ln

( 240
240

)
+

(
0.05 + 1

2 (0.2)2
)

0.2 = 0.35, 𝑑2 =
ln

( 240
240

)
+

(
0.05 − 1

2 (0.2)2
)

0.2 = 0.15

Next, compute 𝒩(𝑑1),𝒩(𝑑2).

𝒩(𝑑1) =
1√
2𝜋

∫ 𝑑1

−∞
𝑒−0.5𝑥2

𝑑𝑥 =
1√
2𝜋

∫ 0.35

−∞
𝑒−0.5𝑥2

𝑑𝑥 ≈ 0.6368

𝒩(𝑑2) =
1√
2𝜋

∫ 𝑑2

−∞
𝑒−0.5𝑥2

𝑑𝑥 =
1√
2𝜋

∫ 0.15

−∞
𝑒−0.5𝑥2

𝑑𝑥 ≈ 0.5596

We can now price our Call option!

𝐶240(240, 𝑡) = 240(0.6368) − 240𝑒−0.05(.5596) ≈ $25.08.

Going through each computation is tiresome and unnecessary; there are packages in
programming software that will output the prices, provided you have the relevant information.

Example 5.6. Suppose a European Call option is priced at $30 with a strike price of $100.27 using
the Black-Scholes model. If the stock price is $125.33, volatility = 20%, and time to expiration is
one year, find the prevailing risk-free rate.

The idea is to write 𝑑1, 𝑑2 as a function of 𝑟. After plugging in values,

𝑑1 = 5(ln(1.25) + 𝑟 + 0.02), 𝑑2 = 5(ln(1.25) + 𝑟 − 0.02).

Then, we set up an equation to solve for 𝑟.

30 =
125.33√

2𝜋

∫ 5(ln(1.25)+𝑟+0.02)

−∞
𝑒−0.5𝑥2

𝑑𝑥 − 100.27√
2𝜋

𝑒−𝑟
∫ 5(ln(1.25)+𝑟−0.02)

−∞
𝑒−0.5𝑥2

𝑑𝑥

Using a graphing calculator, we find that 𝑟 ≈ 4.04%.

5.3 Limits of Calls and Puts
So far, we have used the Black-Scholes model to price Calls and Puts. While that is already an
indispensable tool, we can go further. What if we took limits of each component? How does that
influence the behavior of Call and Put prices? We will analyze the limits of 𝜎 and 𝑡 for example.

Example 5.7. Compare and contrast the behavior of a market for 𝜎 → ∞ and 𝜎 → 0 using Call
and Put options.
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We first look at what happens to 𝒩(𝑑1),𝒩(𝑑2). As 𝜎 → ∞, 𝑑1 → ∞ and 𝑑2 → −∞, making,
𝒩(𝑑1) = 1 and 𝒩(𝑑2) = 0. Therefore,

𝐶𝐸(𝑆, 𝑡) → 𝑆 and 𝑃𝐸(𝑆, 𝑡) → 𝐸𝑒−𝑟(𝑇−𝑡).

Remark: In this limit, 𝒩(−𝑑1) = 0 and 𝒩(−𝑑2), which is used for the Put equation.
𝜎 → ∞ represents an extremely volatile market (i.e. sudden market crash). Call options converge
to the stock price and Put options converge to the present value of the strike price.

Let’s see what happens if we take 𝜎 → 0.

We must consider if ln
(
𝑆
𝐸

)
+

(
𝑟 + 1

2𝜎
2) (𝑇 − 𝑡) > 0, or 𝑆 > 𝐸𝑒−𝑟(𝑇−𝑡) when we set 𝜎 to 0 and simplify.

In this case, as 𝜎 → 0, 𝑑1 → ∞ and 𝑑2 → ∞, making 𝒩(𝑑1) → 1 and 𝒩(𝑑2) → 1. Then, we obtain
the conditional value

𝐶𝐸(𝑆, 𝑡) =
{
𝑆 − 𝐸𝑒−𝑟(𝑇−𝑡) > 0 if 𝑆 > 𝐸𝑒−𝑟(𝑇−𝑡)(intrinsic value)
0 otherwise

As we would expect for a put option, the conditions are flipped:

𝑃𝐸(𝑆, 𝑡) =
{

0 𝑆 > 𝐸𝑒−𝑟(𝑇−𝑡)

𝐸𝑒−𝑟(𝑇−𝑡) − 𝑆 otherwise

𝜎 → 0 implies not much is happening in the market and prices are stable. Without volatility, option
prices converge to their value at expiration discounted to its present value.

Example 5.8. Compare and contrast the behavior for 𝑡 → 𝑇 using Call and Put options.

We first have to consider 𝑑1 and 𝑑2 for when 𝑆 > 𝐸 and 𝑆 < 𝐸. As 𝑡 → 𝑇, 𝑇 − 𝑡 → 0.

lim
𝑡→𝑇

𝑑1 = lim
𝑡→𝑇

𝑑2 =

{
∞ if 𝑆 > 𝐸

−∞ if 𝑆 < 𝐸

This is derived from the fact that ln
(
𝑆
𝐸

)
> 0 if 𝑆 > 𝐸 and ln

(
𝑆
𝐸

)
< 0 if 𝑆 < 𝐸. Then,

𝒩(𝑑1) = 𝒩(𝑑2) =
{

1 if 𝑆 > 𝐸

0 if 𝑆 < 𝐸

Additionally, 𝐸𝑒−𝑟(𝑇−𝑡) → 𝐸 and so

lim
𝑡→𝑇

𝐶𝐸(𝑆, 𝑡) =
{
𝑆 − 𝐸 if 𝑆 > 𝐸

0 if 𝑆 < 𝐸
= max(𝑆 − 𝐸, 0).

Likewise,

lim
𝑡→𝑇

𝑃𝐸(𝑆, 𝑡) =
{

0 if 𝑆 > 𝐸

𝐸 − 𝑆 if 𝑆 < 𝐸
= max(𝐸 − 𝑆, 0).
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Therefore, as 𝑡 → 𝑇, options converge to their well known values−those derived in Section 2. This
makes sense as we constructed the portfolios at 𝑡 = 𝑇, or at expiration.

As a sanity check, other relevant limits for puts and calls are shown below:

Stock price grows infinitely (i.e. 𝑆 → ∞).
• 𝐶𝐸(𝑆, 𝑡) → ∞.
• 𝑃𝐸(𝑆, 𝑡) → 0.

Stock price unexpectedly plummets (i.e. 𝑆 → 0).
• 𝐶𝐸(𝑆, 𝑡) → 0.
• 𝑃𝐸(𝑆, 𝑡) → 𝐸𝑒−𝑟(𝑇−𝑡).

Interest rates are growing rapidly (i.e. 𝑟 → ∞).
• 𝐶𝐸(𝑆, 𝑡) → 𝑆.
• 𝑃𝐸(𝑆, 𝑡) → 0.

A common theme that is reflected between each limit is how calls and puts always behave in
opposition to each other. This is necessary for a stable market and for no arbitrage profits to exist.
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6 The Greeks: Changes in Calls and Puts

6.1 Introduction
In the last section, we analyzed limits of calls and puts with respect to each of the components of
the Black-Scholes model. Now, as the title implies, we are going to look at the partial derivatives
of options to measure how they change as one component is perturbed. Each derivative is given a
special name, as we observe with the following definition.

Definition 6.1. Let 𝐶𝐸(𝑆, 𝑡), 𝑃𝐸(𝑆, 𝑡) be European Call and Put options following the Black-Scholes
model. The Greeks are a set of partial derivatives of 𝐶 and 𝑃 with respect to different variables in
the model. More precisely,

Delta : Δ𝐶 =
𝜕𝐶

𝜕𝑆
, Δ𝑃 =

𝜕𝑃

𝜕𝑆

Theta : 𝜃𝐶 =
𝜕𝐶

𝜕𝑡
, 𝜃𝑃 =

𝜕𝑃

𝜕𝑡
.

Vega : 𝜈𝐶 =
𝜕𝐶

𝜕𝜎
, 𝜈𝑃 =

𝜕𝑃

𝜕𝜎
.

Rho : 𝜌𝐶 =
𝜕𝐶

𝜕𝑟
, 𝜌𝑃 =

𝜕𝑃

𝜕𝑟
.

We briefly interpret each derivative:
• Delta is the change of an option price with respect to a change in stock price.
• Theta is the change of an option price as it approaches expiration (time decay).
• Vega is the change of an option price as the volatility of the stock changes.
• Rho is the change of an option price with respect to a change in interest rate.

The greeks are valuable for options traders and portfolio managers who wish to understand how
their portfolio responds to changes in any of these variables and to hedge their positions
accordingly.

Note that this is not the complete list of greeks, but the ones listed above are typically the most
used.

6.2 Derivation and Analysis of the Greeks
Throughout this section, we will analytically derive a closed-form expression for each of these
greeks. The heavy work will come with computing the greeks for Calls; Put-Call Parity quickly
gives us the partials for Puts.

Theorem 6.2. Options that follow the Black-Scholes pricing model find that

𝜕𝐶

𝜕𝑆
= Δ𝐶 = 𝒩(𝑑1),

𝜕𝑃

𝜕𝑆
= Δ𝑃 = 𝒩(𝑑1) − 1
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The proof for this Theorem will be lengthy; there are multiple items to prove. However, this will
save us a lot of time when deriving the other greeks.

Proof. Before we begin, define 𝑛(𝑑) = 𝒩 ′(𝑑) =
𝜕𝒩(𝑑)
𝜕𝑑 = 1√

2𝜋
𝑒−0.5𝑑2

. Using the multivariate Chain
Rule,

𝜕𝐶

𝜕𝑆
= 𝒩(𝑑1) + 𝑆𝑛(𝑑1)

𝜕𝑑1
𝜕𝑆

− 𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2)
𝜕𝑑2
𝜕𝑆

We can use the equation in Theorem 5.4 to compute 𝜕𝑑1
𝜕𝑆 and 𝜕𝑑2

𝜕𝑆 :

𝜕𝑑1
𝜕𝑆

=
1
𝐸
· 𝐸
𝑆
· 1
𝜎
√
𝑇 − 𝑡

=
1

𝑆𝜎
√
𝑇 − 𝑡

=
𝜕𝑑2
𝜕𝑆

Substitute these values into 𝜕𝐶
𝜕𝑆

𝜕𝐶

𝜕𝑆
= 𝒩(𝑑1) +

𝑆𝑛(𝑑1)
𝑆𝜎

√
𝑇 − 𝑡

− 𝐸

𝑆
𝑒−𝑟(𝑇−𝑡)

(
𝑛(𝑑2)

𝜎
√
𝑇 − 𝑡

)
We can factor out 1

𝑆𝜎
√
𝑇−𝑡 :

𝜕𝐶

𝜕𝑆
= 𝒩(𝑑1) +

1
𝑆𝜎

√
𝑇 − 𝑡

(
𝑆𝑛(𝑑1) − 𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2)

)
The goal is to show that the expression in blue is equal to zero. Before doing so, we need to show
that 𝑑2 = 𝑑1 − 𝜎

√
𝑇 − 𝑡.

𝑑1 − 𝜎
√
𝑇 − 𝑡 =

ln
(
𝑆
𝐸

)
+

(
𝑟 + 1

2𝜎
2) (𝑇 − 𝑡)

𝜎
√
𝑇

− 𝜎
√
𝑇 − 𝑡

=
ln

(
𝑆
𝐸

)
+

(
𝑟𝑇 − 𝑟𝑡 + 1

2𝜎
2𝑇 − 1

2𝜎
2𝑡

)
− 𝜎2(𝑇 − 𝑡)

𝜎
√
𝑇

=
ln

(
𝑆
𝐸

)
+

(
𝑟𝑇 − 𝑟𝑡 − 1

2𝜎
2𝑇 + 1

2𝜎
2𝑡

)
𝜎
√
𝑇

=
ln

(
𝑆
𝐸

)
+

(
𝑟 − 1

2𝜎
2) (𝑇 − 𝑡)

𝜎
√
𝑇

= 𝑑2

So, we have that

𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2) = 𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑1 − 𝜎
√
𝑇 − 𝑡) = 𝐸𝑒−𝑟(𝑇−𝑡) · 1√

2𝜋
𝑒−

1
2 (𝑑1−𝜎

√
𝑇−𝑡)2

= 𝐸𝑒−𝑟(𝑇−𝑡) · 1√
2𝜋

𝑒−0.5𝑑2

︸       ︷︷       ︸
=𝑛(𝑑1)

𝑒−
1
2 (𝑑2

1−2𝑑1𝜎
√
𝑇−𝑡+𝜎2(𝑇−𝑡))
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= 𝑛(𝑑1)𝐸𝑒−𝑟𝑇+𝑟𝑡−𝑑1𝜎
√
𝑇−𝑡+ 1

2 𝜎
2(𝑇−𝑡)

= 𝑛(𝑑1)𝐸𝑒−𝑟𝑇+𝑟𝑡−ln( 𝑆
𝐸 )+𝑟𝑇−𝑟𝑡− 1

2 𝜎𝑇+ 1
2 𝜎

2𝑡− 1
2 𝜎

2𝑇− 1
2 𝜎

2𝑡

Many terms will cancel out, leaving us with

𝑛(𝑑1)𝐸 · 𝑆
𝐸

= 𝑆𝑛(𝑑1)

Therefore, 𝑆𝑛(𝑑1) − 𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2) = 𝑆𝑛(𝑑1) − 𝑆𝑛(𝑑1) = 0. Finally, this gives us

𝜕𝐶

𝜕𝑆
= 𝒩(𝑑1).

Recall the expression for Put-Call Parity: 𝑃 + 𝑆 = 𝐶 + 𝐸𝑒−𝑟(𝑇−𝑡). Rewrite as an expression for 𝑃 and
differentiate:

𝑃 = 𝐶 + 𝐸𝑒−𝑟(𝑇−𝑡) − 𝑆 =⇒ 𝜕𝑃

𝜕𝑆
=

𝜕𝐶

𝜕𝑆
− 1 = 𝒩(𝑑1) − 1 = −𝒩(−𝑑1).

Whew! □

From such a tedious proof, there are some important takeaways that will simplify the next ones:
• 𝑑2 = 𝑑1 − 𝜎

√
𝑇 − 𝑡

• 𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2) = 𝑆𝑛(𝑑1) which implies 𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2) − 𝑆𝑛(𝑑1) = 0 and
𝑆𝑛(𝑑1) − 𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2) = 0.

One important observation for Δ𝐶 ,Δ𝑃 is that

0 < Δ𝐶 < 1, −1 < Δ𝑃 < 0.

Therefore, Δ𝑃 < 0 under any portfolio. This makes sense intuitively; the value of a put option can
only decrease with increasing stock price.

Example 6.3. Another commonly used greek is Γ, or 𝜕2𝐶
𝜕𝑆2 ,

𝜕2𝑃
𝜕𝑆2 . Derive the expression for Γ𝑃 and

Γ𝐶 and interpret its value in terms of finance.

As always, first choose to derive the expression for a Call option. We already have 𝜕𝐶
𝜕𝑆 , so we can

differentiate that to obtain the second-order derivative.

𝜕2𝐶

𝜕𝑆2 =
𝜕

𝜕𝑆
(𝒩 (𝑑1) = 𝑛(𝑑1)

𝜕𝑑1
𝜕𝑆

=
𝑛(𝑑1)

𝑆𝜎
√
𝑇 − 𝑡

.

Notice that
𝜕𝑃

𝜕𝑆
=

𝜕𝐶

𝜕𝑆
− 1.

If we differentiate again with respect to 𝑆, the constant vanishes and we are left with

𝜕2𝑃

𝜕𝑆2 =
𝜕2𝐶

𝜕𝑆2
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We find that Γ𝐶 = Γ𝑃 !

This value measures how fast an option’s Δ changes under a single unit change in the stock price.
Since Calls and Puts work in tandem, it is unsurprising that these rates are the same.

Example 6.4. Suppose an option is offered at the strike price 𝐸 = $50, with volatility at 15% and
interest rate at 3.5%. If there is one year until expiration and Δ𝐶 = 0.5, what is the current stock
price? Use this information to then price the value of both a call and put option.

Δ𝐶 = 1
2 implies 𝒩(𝑑1) = 0. By the symmetry of a normal distribution, it must hold that∫ 0

−∞ 𝑒−0.5𝑥2
𝑑𝑥 = 1

2 . Therefore, 𝑑1 = 0 and solve for 𝑆:

ln
(
𝑆
𝐸

)
+

(
𝑟 + 1

2𝜎
2) (𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

= 0 ⇐⇒ ln
(
𝑆

𝐸

)
+

(
𝑟 + 1

2𝜎
2
)
(𝑇 − 𝑡) = 0

Plug in our known values:

ln
(
𝑆

50

)
+

(
0.035 + 1

2 (0.15)2
)
= 0.

After rearranging and exponentiating:

𝑆 = 50𝑒−(0.035+ 1
2 (0.15)2) ≈ $47.74.

The price of a call and put option would then be $2.61 and $3.15, respectively.

Example 6.5. As we said, the Black-Scholes pricing model assumes delta-hedging is possible.
However, it only works for small changes in 𝑆. Refer to Example 5.5. Using the same information,
we have that Δ𝐶 = 0.6368. If the stock price decreases by $50, the price of a call is now 10 cents!

Example 6.6. Consider a portfolio Π of European options that hold 4 long put options, 3 short call
options, and is short 𝛼 units of the stock 𝑆. Mathematically, we define this as

Π = 4𝑃𝐸(𝑆, 𝑡) − 3𝐶𝐸(𝑆, 𝑡) − 𝛼𝑆.

Suppose we would like to choose 𝛼 such that the value of the portfolio Π is unaffected by small
changes in 𝑆. Derive an expression for the best choice of 𝛼

𝜕Π

𝜕𝑆
= 4𝜕𝑃

𝜕𝑆
− 3𝜕𝐶

𝜕𝑆
− 𝛼 = 0 =⇒ 𝛼 = 4Δ𝑃 − 3Δ𝐶 .

This is immunizing a portfolio.
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Theorem 6.7. Options that follow the Black-Scholes pricing model satisfy

𝜕𝐶

𝜕𝑡
= 𝜃𝐶 = −

(
𝐸𝑟𝑒−𝑟(𝑇−𝑡)𝒩(𝑑2) + 𝑆𝑛(𝑑1) ·

𝜎

2
√
𝑇 − 𝑡

)
𝜕𝑃

𝜕𝑡
= 𝜃𝑃 = − 𝜎

2
√
𝑇 − 𝑡

𝑆𝑛(𝑑1) + 𝐸𝑟𝑒−𝑟(𝑇−𝑡)𝒩(−𝑑2).

Proof. Let 𝜏 = 𝑇 − 𝑡. Then,

𝜕𝐶

𝜕𝑡
= 𝑆𝑛(𝑑1)

𝜕𝑑1
𝜕𝑡

− 𝐸𝑟𝑒−𝑟(𝑇−𝑡)𝒩(𝑑2) − 𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2)
𝜕𝑑2
𝜕𝑡

Our goal is to show 𝜕𝐶
𝜕𝑡 = − 𝜕𝐶

𝜕𝜏 . It is sufficient enough to show that 𝜕𝑑1
𝜕𝑡 = − 𝜕𝑑1

𝜕𝜏 .

𝜕𝑑1
𝜕𝑡

=

−𝜎
√
𝑇 − 𝑡

(
𝑟 + 1

2𝜎
2) + (

ln
(
𝑆
𝐸

)
+

(
𝑟 + 1

2𝜎
2) (𝑇 − 𝑡)

)
· 1

2𝜎
√
𝑇−𝑡

𝜎2(𝑇 − 𝑡)

𝜕𝑑1
𝜕𝜏

=

𝜎
√
𝜏
(
𝑟 + 1

2𝜎
2) − (

ln
(
𝑆
𝐸

)
+

(
𝑟 + 1

2𝜎
2) 𝜏) · 1

2𝜎
√
𝑇−𝑡

𝜎2𝜏

If we substitute 𝜏 = 𝑇 − 𝑡 into the second expression, then we have 𝜕𝑑1
𝜕𝑡 = − 𝜕𝑑1

𝜕𝜏 . We use this relation
in the expression for 𝜕𝐶

𝜕𝜏 .

𝜕𝐶

𝜕𝑡
= −𝑆𝑛(𝑑1)

𝜕𝑑1
𝜕𝜏

− 𝐸𝑟𝑒−𝑟𝜏𝒩(𝑑2) + 𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2)
𝜕𝑑2
𝜕𝜏

Recall in the proof for Theorem 6.2 that 𝑑2 = 𝑑1 − 𝜎
√
𝜏. So, 𝜕𝑑2

𝜕𝜏 =
𝜕𝑑1
𝜕𝜏 − 𝜎

2
√
𝜏

and

𝜕𝐶

𝜕𝑡
= −𝑆𝑛(𝑑1)

𝜕𝑑1
𝜕𝜏

− 𝐸𝑟𝑒−𝑟𝜏𝒩(𝑑2) + 𝐸𝑒−𝑟𝜏𝑛(𝑑2)
(
𝜕𝑑1
𝜕𝜏

− 𝜎

2
√
𝜏

)

=
𝜕𝑑1
𝜕𝜏

©­­­«𝐸𝑒
−𝑟(𝑇−𝑡)𝑛(𝑑2) − 𝑆𝑛(𝑑1)︸                        ︷︷                        ︸

=0 by Thm 6.2

ª®®®¬ − 𝐸𝑟𝑒−𝑟(𝑇−𝑡)𝒩(𝑑2) − 𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2)︸           ︷︷           ︸
=𝑆𝑛(𝑑1)

𝜎

2
√
𝜏

Letting 𝜏 = 𝑇 − 𝑡,
𝜕𝐶

𝜕𝑡
= −

(
𝐸𝑟𝑒−𝑟(𝑇−𝑡)𝒩(𝑑2) + 𝑆𝑛(𝑑1) ·

𝜎

2
√
𝑇 − 𝑡

)
.

Apply Put-Call Parity to derive 𝜕𝑃
𝜕𝑡 :

𝜕𝑃

𝜕𝑡
=

𝜕𝐶

𝜕𝑡
+ 𝐸𝑟𝑒−𝑟(𝑇−𝑡)
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= − 𝜎

2
√
𝑇 − 𝑡

− 𝐸𝑟𝑒−𝑟(𝑇−𝑡)𝒩(𝑑2) + 𝐸𝑟𝑒−𝑟(𝑇−𝑡)

= − 𝜎

2
√
𝑇 − 𝑡

+ 𝐸𝑟𝑒−𝑟(𝑇−𝑡)(1 − 𝒩(𝑑1))

Since 1 − 𝒩(𝑑1) = 𝒩(−𝑑2),

𝜕𝑃

𝜕𝑡
= − 𝜎

2
√
𝑇 − 𝑡

+ 𝐸𝑟𝑒−𝑟(𝑇−𝑡)𝒩(−𝑑2).

□

An important corollary is that 𝜃𝐶 , 𝜃𝑃 < 0 almost always. Therefore, we think of 𝜃 as time decay, or
how much an option loses value as it approaches expiration. In other words, the present value of
an option erodes over time. Due to the 𝜎

2
√
𝑇−𝑡 term, as

√
𝑇 − 𝑡 → 0 (approaches expiration), the

decay is very fast.

Theorem 6.8. Options that follow the Black-Scholes pricing model satisfy

𝜕𝐶

𝜕𝜎
=

𝜕𝑃

𝜕𝜎
=

(
𝑆
√
𝑇 − 𝑡

)
𝑛(𝑑1).

Proof. We take the derivative of 𝐶 with respect to 𝜎:

𝜕𝐶

𝜕𝜎
= 𝑆𝑛(𝑑1)

𝜕𝑑1
𝜕𝜎

− 𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2)
𝜕𝑑2
𝜕𝜎

Since 𝑑2 = 𝑑1 − 𝜎
√
𝑇 − 𝑡, 𝜕𝑑2

𝜕𝜎 =
𝜕𝑑1
𝜕𝜎 −

√
𝑇 − 𝑡. Substituting this value:

𝜕𝐶

𝜕𝜎
= 𝑆𝑛(𝑑1)

𝜕𝑑1
𝜕𝜎

− 𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2)
(
𝜕𝑑1
𝜕𝜎

−
√
𝑇 − 𝑡

)

=
𝜕𝑑1
𝜕𝜎

©­­­«𝑆𝑛(𝑑1) − 𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2)︸                        ︷︷                        ︸
=0 by Thm. 6.2

ª®®®¬ +
(√

𝑇 − 𝑡
)
𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2)︸           ︷︷           ︸

=𝑆𝑛(𝑑1)

Hence, we have shown
𝜕𝐶

𝜕𝜎
= 𝑆

(√
𝑇 − 𝑡

)
𝑛(𝑑2).

Using Put-Call Parity,

𝑃 = 𝐶 + 𝐸𝑒−𝑟(𝑇−𝑡) − 𝑆 =⇒ 𝜕𝑃

𝜕𝜎
=

𝜕𝐶

𝜕𝜎

since 𝐸𝑒−𝑟(𝑇−𝑡) − 𝑆 does not depend on 𝜎. □

As said earlier, Vega measures the sensitivity of an option’s price due to changes in its implied
volatility. All components used in 𝜈 are positive, so 𝜈 > 0 consequently. As the option approaches
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expiration, Vega decreases but remains positive. This is to say, the volatility or uncertainty in the
stock decreases as the time to expiration decreases. This should feel intuitive: with less time to
expiration, the stock has a lower probability to drastically fluctuate.

Example 6.9. A call and put option has price $5. If 𝜈 = 10 and 𝜎 increases by 3%, what is the new
price of the two options?

Since 𝜈 is equal for both calls and puts, their resulting value will also be equal. The increase in
value of both options are given by the differential:

𝜕𝑃 =
𝜕𝑃

𝜕𝜎
𝜕𝜎 = (10)(0.03) = 0.3.

Therefore, the new price of both options is $5.30.

Theorem 6.10. Options that follow the Black-Scholes pricing model satisfy

𝜕𝐶

𝜕𝑟
= 𝜌𝐶 = (𝑇 − 𝑡)𝐸𝑒−𝑟(𝑇−𝑡)𝒩(𝑑2),

𝜕𝑃

𝜕𝑟
= 𝜌𝑃 = −(𝑇 − 𝑡)𝐸𝑒−𝑟(𝑇−𝑡)𝒩(−𝑑2)

Proof.
𝜕𝐶

𝜕𝑟
= 𝑆𝑛(𝑑1)

𝜕𝑑1
𝜕𝑟

+ 𝐸(𝑇 − 𝑡)𝑒−𝑟(𝑇−𝑡)𝒩(𝑑2) − 𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2)
𝜕𝑑2
𝜕𝑟

We have that 𝜕𝑑1
𝜕𝑟 =

𝜕𝑑2
𝜕𝑟 =

√
𝑇−𝑡
𝜎 . Once again, we substitute:

𝜕𝐶

𝜕𝑟
= 𝑆𝑛(𝑑1)

(√
𝑇 − 𝑡

𝜎

)
+ 𝐸(𝑇 − 𝑡)𝑒−𝑟(𝑇−𝑡)𝒩(𝑑2) − 𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2)

(√
𝑇 − 𝑡

𝜎

)

=

(√
𝑇 − 𝑡

𝜎

) ©­­­«𝑆𝑛(𝑑1) − 𝐸𝑒−𝑟(𝑇−𝑡)𝑛(𝑑2)︸                        ︷︷                        ︸
=0 by Thm 6.2

ª®®®¬ + (𝑇 − 𝑡)𝐸𝑒−𝑟(𝑇−𝑡)𝒩(𝑑2)

= (𝑇 − 𝑡)𝐸𝑒−𝑟(𝑇−𝑡)𝒩(𝑑2).
Use Put-Call Parity to derive 𝜌𝑃 :

𝜕𝑃

𝜕𝑟
=

𝜕𝐶

𝜕𝑟
− (𝑇 − 𝑡)𝐸𝑒−𝑟(𝑇−𝑡)

= 𝐸(𝑇 − 𝑡)𝑒−𝑟(𝑇−𝑡)(𝒩 (𝑑1) − 1)
= −𝐸(𝑇 − 𝑡)𝑒−𝑟(𝑇−𝑡)𝒩(−𝑑2).

We use the fact that 𝒩(𝑑1) − 1 = −(1 − 𝒩(𝑑1)) = −𝒩(−𝑑2). □

Rho measures sensitivity of an option’s price to perturbations in the risk-free interest rate. Since
each component is positive, 𝜌𝐶 > 0 and 𝜌𝑃 < 0.
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• When interest rates rise, the present value of the strike price decreases, making call options
more appealing. This is because you are borrowing money to buy the stock later. So, higher
rates make it advantageous to delay payment, increasing the price of call options.

• When interest rates fall, the present value of the strike price decreases, making put options less
appealing. This is because you have the right to sell at the strike price and therefore a lower
present value reduces the value of a put, making it cheaper.

While we only analyzed each greek separately, do note that they operate together. For example, a
call option is guaranteed to lose value over time as we saw from 𝜃 (Theorem 5.6). Therefore, it is
up to Δ, 𝜈, 𝜌 to break even, or bring up the call option to where it originally was.

Example 6.11. Use the information about Apple stock in Example 5.5. Determine the value of the
four greeks (Δ, 𝜃, 𝜈, 𝜌) for calls and puts.

Recall that 𝑆 = 240, 𝐸 = 240, 𝜎 = 0.2, 𝑟 = 0.05, 𝑇 − 𝑡 = 1. We can summarize our findings in a table:

Call Option Put Option
Delta (Δ) 0.6368 −0.3632
Theta (𝜃) −15.3937 −3.9789
Vega (𝜈) 90.0577 90.0577
Rho (𝜌) 127.758 −100.5371
Value $25.08 $13.38

What if we set 𝑇 − 𝑡 = 0.25 (i.e. roughly 3 months until expiration?). Our new values are

Call Option Put Option
Delta (Δ) 0.5695 −0.4305
Theta (𝜃) −25.138 −13.287
Vega (𝜈) 47.1456 47.1456
Rho (𝜌) 31.3986 −27.8561
Value $11.08 $8.09

Here are some key observations:

• Since 𝑆 = 𝐸, 𝒩(𝑑1) → 0.5 because 𝑑1 → 0. This is the only possible condition for Δ𝐶 to converge
to 0.5. Likewise, Δ𝑃 converges to −0.5. If 𝑆 ≤ 𝐸, then Δ will converge to either 0 or 1 for a Call
and -1 or 0 for a Put.

• Since 𝑇 − 𝑡 decreases, 𝜃 increases in magnitude for both options, as expected.

• 𝜈 decreases because 𝑇 − 𝑡 decrease. If we took 𝑇 − 𝑡 → 0, then 𝜈 → 0.

• Similarly, 𝜌 decreases in magnitude and will converge to 0 if 𝑇 − 𝑡 → 0.

• The time decay outweighs the significance in the changes of each greek, decreasing the value of
both options.
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7 American Options Pricing
So far, we derived the Black-Scholes model for European options. The model works under the
assumption that one cannot exercise an option until expiration (by definition of a European
option). However, American options can be exercised early−at any point up to and including
expiration. The question goes without saying: can we model American options using
Black-Scholes? What we find is that American options will closely match the Black-Scholes model
with some minor differences.

Theorem 7.1. The value of an American option is the value of a European option (from Black-Scholes)
plus the value of exercising early.

An early exercise of an American option always produces a value of
• 𝑆 − 𝐸 for early exercise of an American call
• 𝐸 − 𝑆 for early exercise of an American put

The value of American options, when exercised early, is nothing more than its intrinsic value.
Also, as implied by the theorem:
• An early exercise of an American option is NEVER optimal. It is always worth exercising at

expiration. If 𝑆 < 𝐸, the maximum loss is the premium. For this reason, the pricing for an
American call is that of a European call.

• An early exercise of an American put is sometimes optimal, namely if it is deep in the money
and there is a long time until expiration (higher probability of put value to not go out of the
money). For this reason, this is no analytic (closed-form) solution for an American put.

Example 7.2. Suppose the European put option 𝑃35(20) = 10 suddenly becomes an American
option. Are there arbitrage opportunities?

For 𝑃35(20), 𝐸 = 35 and 𝑆 = 20. We can exercise the right to sell the stock 𝑆 at 𝐸 = $35 after buying
it for $20 for a profit of $15. The total arbitrage is the profit minus the premium paid = $5.

Example 7.3. Suppose the European put option 𝑃35(20) = 25 suddenly becomes an American
option. Are there arbitrage opportunities?

No. For 𝑃35(20) = 25, the cost of the option ($25) is greater than the immediate profit from buying
and exercising the option.

Example 7.4. Suppose the European Call 𝐶60(80) = 10 suddenly becomes an American option.
Are there arbitrage opportunities?

For 𝐶60(80) = 10, we can immediately exercise the option and sell the stock for $80 for a profit of
$20. Taking the premium into account, an arbitrage of $10. exists.

Example 7.5. Suppose the European Call 𝐶60(80) = 25 suddenly becomes an American option.
Are there arbitrage opportunities?
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No. The premium paid outweighs the cost of immediately exercising the option and selling the
stock.

While the scenarios given in Examples 7.2−7.5 would never happen in an open market, it helps us
understand how arbitrage is conditioned for American options.

Example 7.6. Consider a Call and Put option with 𝐸 = 50, 𝑟 = 5%, 𝜎 = 20%, 𝑇 − 𝑡 = 1. We present
how American and European options are graphed compared to each other.

Here, American options must stay above 𝑆 − 𝐸 to ensure that no early exercise and ultimately
arbitrage opportunities happen. This is why American options also follow the Black-Scholes
model: it is nonsensical to exercise early.
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As stated in Theorem 7.1, it is optimal to early exercise is a put is deep in the money (i.e. intrinsic
value greater than European put option price) with a long time until expiration. For example,
exercising when 𝑆 = 20 is great because you can take the guaranteed intrinsic value without
having to hold onto an option that is priced lower.

If we take 𝑆 = $20 AND an American put is mispriced at $20 (by the European Put curve) AND its
intrinsic value is $30, we can buy an American put at $20 and immediately exercise the right to sell
it for $30 for an arbitrage of $10 without risk.

To conclude, there are two major takeaways from this section:
• The value of a European put option 𝑃𝐸(𝑆, 𝑡) can sometimes be at any time be less than its

intrinsic value 𝐸 − 𝑆.
• The value of a European call option can never at any time be less than its intrinsic value 𝑆 − 𝐸.
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8 Exploring Volatility and Miscellaneous Information
We want to observe how volatility in stocks do not agree with the Black-Scholes model. Recall
that Black-Scholes assumes a constant volatility and risk-free rate over time. Before doing so, we
introduce some definitions:

Definition 8.1. We use historical, implied, and realized volatility to analyze the behavior of stock
prices.
1. Historical volatility measures how much the stock price has varied in the past.
2. Implied volatility reflects the market’s expectation of future price fluctuations, derived from

option prices.
3. Realized volatility is the actual observed fluctuations of a stock over a given period.

Implied volatility is found by using the actual price of an option and solving for 𝜎. Realized
volatility is derived from historical volatility. For example, the annualized volatility and mean
return is given by

𝜎̂ = 𝜎̂𝑑
√

252, 𝜇̂ = 252𝜇̂𝑑 .

We use
√

252 as 252 is roughly the number of trading days per year, or aggregate time in which the
market is open per year. 𝜎̂𝑑 is derived from a recursive function 𝑅𝑛 , which computes the
percentage increase in stock price compared to the previous day.

𝑅𝑛 =
𝑆(𝑛) − 𝑆(𝑛 − 1)

𝑆(𝑛 − 1) 1 ≤ 𝑛 ≤ 𝑁.

We then compute the logarithmic return to find the annualized volatility:

𝜇̂𝑑 =
1
𝑁

𝑁∑
𝑛=1

ln(1 + 𝑅𝑛), 𝜎̂𝑑 =

√√√
1

𝑁 − 1

𝑁∑
𝑛=1

(ln(1 + 𝑅𝑛) − 𝜇̂𝑑)2

Historical volatility is computed through the standard deviation of annualized returns.

Example 8.2. The historical price, in millions from 2018-2023 of a house is shown below:

Year 2018 2019 2020 2021 2022 2023
Price 3.1 3.4 3.9 4.3 4.7 5.4

Assume the Black-Scholes framework for options pricing holds and the risk-free annual continu-
ously compounded interest rate is 2.2%. The owner of the home wants to negotiate the price of
selling a European option to buy his home for $5.4 million on a fixed date in exactly 3 years to a
prospective buyer. What price should the owner ask for this option?

Since we are given a series of past prices, we want to compute the historical volatility. It is more
useful to write code that will generate these results, especially when dealing with a long list of
returns.
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We obtain 𝜎 = 0.0249; we do not have to multiply by
√

252 because we are already given annualized
data. Now, plug in the given into the Black-Scholes equation for a call, where 𝑆 = 5.4 × 106 , 𝐸 =

5.4 × 106 , 𝑟 = 0.022, 𝑇 − 𝑡 = 3, 𝜎 = 0.0249. The owner should ask for a price of $351,014.

Example 8.3. As of March 15, 2025, Apple’s (APPL) 10 most recent daily stock prices are shown
below:

Day Mar 3 Mar 4 Mar 5 Mar 6 Mar 7 Mar 10 Mar 11 Mar 12 Mar 13 Mar 14
Price 238.03 235.93 235.74 235.33 239.07 227.48 220.84 216.98 209.68 213.49

Compute the annualized volatility and mean returns for APPL. Hoping the stock bounces back
up, you want to price a European-style call option at a strike price equivalent to the mean stock
price. Following a Black-Scholes model, what should this option be priced if 𝑟 = 0.037 with 4
weeks until expiration? Use the stock price for March 14th.

Compute the historical volatility as we did in the previous example, but multiply by
√

252 to obtain
the annualized volatility. We get 𝜎̂ = 0.3624. The annualized mean return is calculated through
the code

Multiplying by 252, 𝜇̂ = −2.74. The mean stock over the past 10 days is $227.26 which will be our
strike price. Letting 𝑇 − 𝑡 = 28

365 , we plug in the given parameters into the Black-Scholes model and
find that we should price the call option at $3.76.

Additionally, we may want to look at the main greeks to analyze the behavior of the option.

Δ𝐶 = 0.293, 𝜃𝐶 = −50.226, 𝜈𝐶 = 20.343, 𝜌𝐶 = 4.513

𝜃𝐶 is noticeably high. If we don’t observe an increase in stock price (as we hope in this example),
volatility, or risk-free rate, the option’s value will quickly erode over the 4 weeks. However, even a
2% increase in volatility could almost counteract 𝜃𝐶 .
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Now, we look at two types of plots that measure implied volatility:

Definition 8.4. Volatility smiles measure how the implied volatility changes with respect to in-
creasing strike prices. Volatility term structures measure how the implied volatility changes as the
time to expiration increases.

In accordance with the Black-Scholes option pricing theory, implied volatility should be constant
with respect to both of these parameters, hence yielding straight lines (by eliminating risk). This
is never true, however. Shown above is what a volatility smile and term structure sketch could
look like: this volatility smile suggests that implied volatility increases when an option grows
deep in or out of the money and volatility term structure suggests that implied volatility increases
as time to expiration increases.

Example 8.5. Plotted on the following page is the volatility smile and term structure for APPL,
using 6 strike prices (232.5, 235, 237.5, 240, 242.5, 245) and time to expiration (7, 14, 21, 28, 35, 41
days). The option prices for calls and puts are also given:

Strike $232.5 $235 $237.5 $240 $242.5 $245
Call $8.4 $6.58 $4.95 $3.53 $2.39 $1.53
Put $1.69 $2.35 $3.20 $4.30 $5.65 $7.30

Time to Expiration (days) 7 14 21 28 35 41
Call Option $3.53 $5.10 $6.30 $7.28 $8.03 $8.70
Put Option $4.30 $5.65 $6.62 $7.4 $8.00 $8.45

The information was gathered on March 7, 2025, when APPL’s stock price was roughly $239.

1. As the strike price increases from $232.50, there is a downward trend in implied volatility.
Therefore, out of the money calls and in the money puts have lower implied volatility, whereas
in the money calls and out of the money puts have higher implied volatility. This is known as
an inverse volatility skew, or volatility smirk.

2. Further from expiration, the implied volatility mostly increases for calls and follows a decay-like
trend for puts. This is due to the decrease in uncertainty which typically causes an increase in
implied volatility for calls (though its effect is more nuanced) and decrease for puts.
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Theorem 8.6. The probability for an option to finish in the money is given by

𝑃(𝑆(𝑡) > 𝐸) = 𝒩(𝑑2) for a call 𝑃(𝑆(𝑡) < 𝐸) = 𝒩(−𝑑2) for a put

where 𝑑2 is given by
ln

(
𝑆(𝑡)
𝐸

)
+

(
𝜇 − 1

2𝜎
2) (𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

The derivation uses the standard normal distribution from Definition 1.8, using
𝜇1 = ln(𝑆(𝑡)) +

(
𝜇 − 1

2𝜎
2) (𝑇 − 𝑡) and 𝜎2

1 = 𝜎2(𝑇 − 𝑡) =⇒ 𝜎1 = 𝜎
√
𝑇 − 𝑡. 𝜇 and 𝑟 are equivalent in

this case since in risk-neutral pricing, the expected return of the asset is interchangeable with the
risk-free rate.

Additionally, we use the fact that 𝑃(𝑆(𝑡) < 𝐸) = 1 − 𝑃(𝑆(𝑡) > 𝐸 and the property of normal
distributions 1 − 𝒩(𝑑2) = 𝒩(−𝑑2).

Example 8.7. Let 𝜇 = 0.0556, 𝜎 = 0.33, 𝑟 = 0.0556, 𝑆(𝑡) = 105 and no dividends are in play. A put
option is priced with strike price 𝐸𝑃 = $92 and one year until expiration. Assuming Geometric
Brownian Motion holds, what is the strike price of a call with the same probability of finishing in
the money as the put option?

The term
(
𝜇 − 1

2𝜎
2) (𝑇 − 𝑡) will vanish as it equals zero. Therefore, we have

−𝑑2 = −
ln

( 105
92

)
0.0556 ≈ −0.3965 =⇒ 𝑃(𝑆(𝑡) < 92) ≈ 𝒩(−0.3965) ≈ 34.56%

A call with the same probability has 𝑑2 = 0.3965. To find a 𝐸𝐶 that finishes in the money with the
same probability, we first require 𝐸𝐶 > 105 and so ln 105

𝐸𝐶
< 0, further implying

1
𝜎
· ln 105

𝐸𝐶
= −0.3965 =⇒ 𝐸𝐶 ≈ $119.84
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Aside: If we have a dividend paying stock 𝑆, then we replace 𝑆(𝑡) with

𝑆(𝑡)𝑒−𝑝(𝑇−𝑡)

in the Black-Scholes model. Dividends are the percentage of a company’s earnings that is paid to
its shareholders as their share of profits.
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9 Code
The code for each function was developed in MATLAB.

9.1 Optimal Bets
The function returns how much to bet to each individual and the profit for a guaranteed, fixed
arbitrage.

9.2 Likelihood Estimator
Returns the likelihood one is to earn an interval of money after playing a game n times. inputs the
payoff and probability of each outcome, number of times the game is played, the baseline, and
whether you are looking for the likelihood below/above the baseline, or between 2 baselines. For
below/above, input [baseline, 0]. For between, input [baseline1, baseline2].
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9.3 Horse Betting Payoffs
Given the total amount of dollar bets made on each horse (stored as an array) and the desired
return per dollar bet, returns the payoffs for each horse.

9.4 Mean Returns and Historical Volatility
Given a set of stock prices, return the mean return 𝜇 and historical volatility 𝜎. You may need to
multiply by 252 (for 𝜇) or

√
252 (for 𝜎) if the prices are not annualized.
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10 References
Some examples, definitions, and theorems are taken from Donald G Saari’s, Mathematics of Finance
− An Intuitive Introduction.

All figures and plots, unless otherwise stated, were designed by me. If you want to reproduce the
MATLAB plots, please refer to my GitHub.

https://github.com/ryangomberg/math176
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