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1 Properties of Complex Numbers

Definition 1.1: Complex Numbers and Properties

A complex number z is of the form z = x+ iy, where x, y ∈ R.

The modulus |z| =
√
x2 + y2 is the distance from the origin to z and the conjugate

of z, z, is z = z − iy.

Example 1 : Show that |z|2 = zz.

Simply apply the definitions:

|z|2 = x2 + y2, zz = (x+ iy)(x− iy) = x2 + y2 =⇒ |z|2 = zz.

Definition 1.2: Complex Numbers in Polar Form, Euler’s Form

The polar form of z = x+ iy is the form

z = r cos θ + ir sin θ = r(cos θ + i sin θ)

where r = |z| is the modulus of z and θ is the argument of z. The principal
argument Argz spans −π ≤ Arg ≤ π.

Euler’s form of z is of the form z = reiθ = |z|eiθ = r(cos θ + i sin θ)

Definition 1.3: Roots of Complex Numbers

Given a non-zero complex number z = reiθ and a positive integer n, the nth roots
of z are the n distinct complex numbers

ck = n
√
re

(θ+2kπ)i
n , k = 0, 1, ..., n− 1

where n
√
z = n

√
re

iθ
n is the principal nth root.
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2 Holomorphic Functions

Functions of a Complex Variable

Example 2 : Compute the function that reflects across the line joining α = 2 + i and
β = 4 + 3i.

Limits and Continuity

Many of the laws and definitions about limits/continuity from real analysis also apply to
complex numbers.

Definition 2.3: Continuity

Let f : D → C and z0 ∈ D. We say f is continuous at z0 if

For all sequences (zn) ⊆ D with lim zn = z0 we have lim f(zn) = f(z0)

f is continuous (on D) if it is continuous at all points z0 ∈ D.

As we will see with the limit definition, we are now thinking of continuity over a
neighborhood, or more precisely, a domain containing open disks. An punctured open
disk has a radius 0 < |z − z0| < δ for some δ > 0, z ∈ C.

Definition 2.4: Limits of Complex Functions

Let f : D → C, where D contains an open punctured neighborhood of z0. We say
that w0 is the limit of f as z approaches z0, written limz→z0 f(z) = w0, if

∀ϵ > 0, ∃δ > 0 such that 0 < |z − z0| < δ =⇒ |f(z)− w0| < ϵ

Note that, unlike in real analysis, the bars are actually notation for the modulus, as
opposed to absolute value, as distance is measured in 2 dimensions. We need to ensure
that the distance between f(z) and w0 between z and z0 grows infinitesimally small as z
and z0 get closer.

Example 3 : Show that limz→0
z2

z = 0.

Proof : Fix ϵ > 0 and let δ = ϵ. Then, we have that∣∣∣∣z2z − 0

∣∣∣∣ < ϵ given |z − 0| < δ =⇒
∣∣∣∣z2z
∣∣∣∣ = |z2|

|z|
=

|z|2

|z|
= |z| < ϵ = δ.
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Example 4 : Prove limz→z0 z
3 = z30 using the ϵ-δ definition.

Sketch Proof : We have that |z3 − z30 | < ϵ for |z − z0| < δ. We are able to use the
difference of cubes to rewrite |z3 − z30 | as

|z3 − z30 | = |(z − z0)(z
2 + zz0 + z20)|

Now, we have to find a bound for (z2 + zz0 + z20). Let us assume |z − z0| < 1, then

|z| = |z − z0 + z0| ≤ |z − z0|+ |z0| (by triangle inequality) < 1 + |z0| by assumption.

This enables us to find a δ directly in terms of z0. Hence,

|z3 − z30 | < |z − z0|(1 + |z0|)2 + |z0|(1 + |z0|) + |z0|2) < ϵ

Therefore, suppose

δ = min

{
1,

ϵ

(1 + |z0|)2 + |z0|(1 + |z0|) + |z0|2)

}
completing the proof.

Example 5 : Suppose limz→z0 f(z) = w0. Prove that limz→z0 |f(z)| = |w0|.

By our assumption, we have that |f(z)− w0| < ϵ for |z − z0| < δ. Now, let ϵ2 > 0. We
want to find a δ2 > 0 such that

|z − z0| < δ2 ⇐= ||f(z)| − |w0|| < ϵ2.

The reverse triangle inequality gives us

||f(z)| − |w0|| ≤ |f(z)− w0| < ϵ = ϵ2

Because ϵ2 = ϵ, we simply choose δ2 = δ.

Definition 2.5: Limits Approaching Infinity

A neighborhood of ∞ is any set containing an open disk at ∞, a subset of the form
{∞} ∪ {z ∈ C : |z| > M}. Note that we only care about one infinity in complex
analysis; negative infinities do not exist. Here, we make the following implications

lim
z→z0

f(z) means: ∀M > 0, ∃δ > 0 such that 0 < |z − z0| < δ =⇒ |f(z)| > M

lim
z→∞

f(z) = w0 means: ∀ϵ > 0, ∃N > 0 such that |z| > N =⇒ |f(z)− w0| < ϵ

lim
z→∞

f(z) = ∞ means: ∀M > 0,∃N > 0 such that |z| > N =⇒ |f(z)| > M
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Example 6 : Prove limz→−3i
z2

z+3i = ∞.

Proof : Assume δ < 1. We have that

0 < |z + 3i| < δ =⇒ |z| ≥ |3i| − |z + 3i| (by triangle ineq) > 3− δ ≥ 2

=⇒
∣∣∣∣ z2

z + 3i

∣∣∣∣ > ∣∣∣∣4δ
∣∣∣∣ ≥M ⇐⇒

∣∣∣∣4δ
∣∣∣∣ ≥M

Therefore, choose δ = min
{
1, 4

M

}
.

Example 7 : Prove limz→∞
iz−1
z−2i = i.

Proof : Let ϵ > 0 be fixed. Then, there exists a N > 0 such that∣∣∣∣ iz − 1

z − 2i
− i

∣∣∣∣ = ∣∣∣∣ −3

z − 2i

∣∣∣∣ = 3

|z − 2i|
< ϵ.

To find such N , we compute

|z − 2i| = |z| − |2i| = |z| − 2 > N =⇒ |z| > N when N > 2

Therefore,
|z| − 2

3
>

1

ϵ
⇐⇒ |z| > 3

ϵ
+ 2 = N for N > 2

Theorem 2.6: Cauchy-Riemann Equations

Let f(z) be decomposed into f(x+ iy). If f(z) = u+ iv if differentiable at z0, then
its real/imaginary parts, in terms of x, y, satisfy the following relations

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

For such z0, its derivative is computed as f ′(z0) = ux + ivx|(x,y).
If the relation holds for all x, y ∈ R, then f(z) is everywhere differentiable.

Example 8 : Using the Cauchy-Riemann Equations, show that f(z) = z3 − 2
z is

differentiable everywhere except for when z = 0 and find its derivative.

Rewriting z = x+ iy, we have

(x+iy)3− 2

x+ iy
= x3+3ix2y−3xy2−iy3−2(x− iy)

x2 + y2
=

(
x3 − 3xy2 − 2x

x2 + y2

)
+

(
3x2y − y3 − 2y

x2 + y2

)
i
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Here, u is the first set of expressions inside the parenthesis, and v is the coefficient of i.
Now, we show ux = vy, uy = −vx.

ux = 3x2 − 3y2 − 2y2 − 2x2

(x2 + y2)2
vy = 3x2 − 3y2 +

2x2 − 2y2

(x2 + y2)2

uy = −6xy +
4xy

(x2 + y2)2
− vx = −6xy +

4xy

(x2 + y2)2

Since both criteria are satisfied, we can conclude f(z) is differentiable on C\{0} and
f ′(z) = 3z2 + 2

z2
, as we expected.

Example 9 : Find the set of points in which f(z) = (|z|2 + z)2 is differentiable. If such
points exist, find their derivative.

(|x+ iy|2 + (x+ iy))2 = ((x2 + y2) + (x+ iy))2

= (x4 + 2x3 + x2 + 2x2y2 + 2y2x+ y4 − y2) + 2(x2y + xy + y3)i

Setting u to the first parentheses and v to the second

ux = 4x3 + 6x2 + 2x+ 4xy2 + 2y2 vy = 2x2 + 2x+ 6y2

uy = 4x2y + 4yx+ 4y3 − 2y − vx = −4xy − 2y

We obtain a system of equations ux − vy = 0 and uy − (−vx) = 0{
ux − vy = 4x3 + 4x2 + 4xy2 − 4y2 = 0 ⇐⇒ x2(x+ 1) = y2(1− x)

uy − (−vx) = 4x2y + 8xy + 4y3 = 0 ⇐⇒ y(x2 + y2 + 2x) = 0

The first case holds for the pairs (−1, 0) and (0, 0), which automatically works for case 2.
Therefore, f(z) is differentiable at z = −1, z = 0. We find that f ′(−1) = f ′(0) = 0.

Example 10 : Find the set of points in which f(z) = 1
z−i is differentiable. If such points

exist, find their derivatives.

Apply the same test from Example 9. In this case, we find that only z = −i. However, f
is not continuous, and consequently, not differentiable at that point! So, f(z) is nowhere
differentiable.
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3 Elementary Functions

Definition 3.1: Exponential Functions and Properties

An exponential function in the complex f(z) = ez satisfies the following properties:
(1) f(z) is entire (holomorphic on the complex plane)
(2) ez is 2πi periodic (i.e. e3πi = eπi).
(3) |ez| = ex for z = x+ iy.
(4) All of the exponential laws work exactly the same with real numbers.

Verifying (3) and (4) requires us to rewrite ez → ex+iy and use Euler’s formula to
show that they work.

Example 11 : Solve ez = 1 + i.

Converting to polar form, 1 + i =
√
2e

iπ
4

√
2e

iπ
4 = eln

√
2e

iπ
4 = eln

√
2+ iπ

4 = ez =⇒ z =
1

2
ln 2 +

iπ

4
+ 2πik for some k ∈ Z.

We use the periodicity of ez to add in the 2πik term.

Definition 3.2: Logarithmic Functions

Write z in polar form at z = reiθ with θ = Argz ∈ [−π, π] and z ̸= 0. The principal
logarithm of z is

Logz := ln r + iθ = ln |z|+ iArgz

If we choose another argument argz, obtain another logarithm

log z = ln |z|+ i arg z

Be careful with notation! Uppercase means we are using the principal logarithm
& argument.

Example 12 : Log(−1− i) = Log
(√

2e−
3πi
4

)
= 1

2 ln 2−
3πi
4 where arg z ∈ [−π, π].

Example 13 : This time, we find log(−1− i).

log(−1− i) =
1

2
ln 2− 3πi

4
+ 2πik, k ∈ Z

Here we let z be the argument arg z ∈ [−π ± 2πk, π ± 2πk], where k is any whole number.

Examples 12 and 13 stress the importance of notation of log versus Log: using log yields
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a set, including the principal logarithm, whereas Log only accepts one value: the
principal logarithm.

Definition 3.3: Properties of Logarithmic Functions

Compared to exponential functions, the properties of exponential are a little bit
more subtle. Let z, w ∈ C, and n ∈ N. Then,
(1) log(zw) = log z + logw + 2πik, k ∈ Z
(2) log

(
z
w

)
= log z = logw + 2πik, k ∈ Z

(3) Logzn = nLogz + 2πki for some integer k with |k| ≤ n
2 .

Applying properties (1) and (2) to principal logarithms require k = −1, 0, or 1.

Example 14 : Let z = w = 4e
2πi
3 . Compute log(zw) and Log(zw) and compare the results.

log(zw) = log
(
16e

4πi
3

)
= 2 ln 4 +

4πi

3
+ 2πik, k ∈ Z

which matches the computation for log z + logw.

Log(zw) = Log
(
16e

4πi
3

)
= Log

(
16e−

2πi
3

)
=

(
2 ln 4 +

4πi

3

)
− 2πi = 2 ln 4− 2πi

3

Notice how we must account for the principal argument in the second computation.
Therefore, our results are different.

Example 15 : Let z = −1 + i. Compute Logz2 and show Logz2 ̸= 2Logz.

Logz2 = Log

((√
2e

3π
4

)2)
= Log

(
2e

3πi
2

)
= ln 2− πi

2
by principal argument.

2Logz = 2 ln 2 +
3πi

2
=⇒ Logz2 = 2Logz − 2πi

This aligns with the property mentioned in the definition above, with k = −1.

Definition 3.4: Multi-valued Functions and Branches

A multi-valued function can produce multiple distinct output values. The branch
of a multi-valued function is a single-valued function F on a domain D which is
holomorphic on D and such that each F (z) is one of the value of f(z). A branch cut
is the removal of a line or curve l on D in C.

We’ve seen examples of branches with logarithms, the most common multi-valued
function. The principle branch cut of a logarithm is a restricted version of the principal
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logarithm. We can construct other types of branches as well. For example, an α branch
cut defines a completely new branch of the logarithm

log z = ln r + iθ where θ ∈ (α− 2π, α)

For example, choosing α = −π yields the same branch cut but different branch,
compared to the principal branch.

Example 16 : Show that the function f(z) = Log(z − 2i) is holomorphic everywhere
except on the portion x ≤ 0 of the line y = 2.

Log(x+ i(y − 2)) = ln
(√

x2 + (y − 2)2
)
+ iArg(z − 2i)

At y = 2, this simplifies to ln |x|+ iArg(x− 2i). Clearly, it is not differentiable at x = 0.
However, Arg(z − 2i) is not differentiable at the branch/cut line
Arg(z − 2i)|y=1 = π =⇒ Arg(x) = π =⇒ x < 0.

Definition 3.5: Power Functions

For any non-zero z and complex number c, we define the function

zc = ec log z

with its principal value
P.V.zc = ecLogz.

Example 17 : Find the principal value of (1− i)2i.

Let f(z) = (1− i)z = ezLog(1−i) = e
zLog

(√
2e−

πi
4

)
= ez(

1
2
ln 2−πi

4 ).

and so
(1− i)2i = e2i(

1
2
−πi

4 ) = e(ln 2)i+π
2 = e

π
2 (cos(ln 2) + i sin(ln 2))

Example 18 : The power function zc is usually multi-valued. However, if c = m is an
integer, prove that zm is single-valued: i.e. it is independent of the branch of the
logarithm used in its definition.

Let c = m be an integer and log z be any branch of the logarithm such that z is not on
the branch cut. Then,

zm = em(Logz+2πni) = emLogze2πmni = emLogz (by periodicity property) = P.V.zm
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Definition 3.6: Trigonometric Functions

For any z ∈ C, define

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i

Example 19 : Compute cos−1(
√
2) with respect to the complex numbers.

This is equivalent to saying that we can find a z ∈ C such that cos z =
√
2.

√
2 =

eiz + e−iz

2
=⇒ 2

√
2eiz +

(
eiz
)2

+ 1 = 0

We multiplied every term by eiz to easily obtain a quadratic equation. Let u = eiz, then

u2 + 2
√
2 + 1 = 0 ⇐⇒ u =

−2
√
2± 4

2
= −

√
2± 1

Setting u = eiz gives

z =
1

i
log
(
−
√
2± 1

)
=

1

i

(
log
(
(
√
2± 1)eiπ

))
=

1

i
(ln
(√

2± 1
)
+iπ) =

1

i
ln
(√

2± 1
)
+π+2πn

9
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4 Integration

Definition 4.1: Standard Parametrization of a Path

(1) Parametrization of a Line
Let z1, z2 be points of a linear path such that the starting point and end point is z1
and z2, respectively. Then, the standard parametrization of the path joining z1 and
z2 is

z(t) = (1− t)z1 + tz2, 0 ≤ t ≤ 1

(2) Parameterization of a Circle
The parameterization of a circle with radius R is given as

z(t) = Reit, 0 ≤ t ≤ 2π if counterclockwise , z(t) = Re−it if clockwise

If the circular path contains a branch cut θ = α, then we parameterize from
α− 2π ≤ t ≤ α.

Example 20 : Find a parametrization for the line joining z = 1 to z = −1 + 2i

z(t) = (1− t) + (−1 + 2i)t

Example 21 : Find a parametrization for the half and full unit circle

zS(t) = eit, 0 ≤ t ≤ π, zC(t) = eit, 0 ≤ t ≤ 2π

Definition 4.2: Contour Integrals

Let z(t) be a parameterization of a contour C from a to b. Then,∫
C
f(z)dz =

∫ b

a
f(z(t))z′(t)dt

If C is closed, simple, and positively oriented, we can denote as
∮
C f(z)dz.

Example 22 : Find
∫
C z

2dz where C is the line from Example 20.

f(z(t)) = (1−2t+2it)2, z′(t) = 2i−2 =⇒
∫
C
z2dz =

∫ 1

0
(1−2t+2it)2(2i−2)dt =

10

3
− 2i

3

Example 23 : Compute
∫
C(z + i)dz ,where C is the line joining 1 + i to −2− i.

z(t) = (1− t)(1 + i) + t(−2− i) = 1− 3t− i− 2ti, z′(t) = −3− 2i

10
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Therefore the integral is computed accordingly∫
C
(z + i)dz =

∫ 1

0
f(z(t))z′(t)dt = −(3 + 2i)(−1 + 2i)

2
= −7

2
+ 2i

Aside: A future theorem implies that all integrals with z in the integrand must be
computed with parametrization! The underlying idea involves z having no anti-derivative.

Example 24 : Compute
∫
C1

dz
z and

∫
C2

dz
z where C1 is the semi-circle of radius 1 oriented

counterclockwise and C2 is the semi-circle of radius 1 oriented clockwise, both starting at
z = 1.

C1 : z = eit, 0 ≤ t ≤ π =⇒
∫
C1

dz

z
=

∫ π

0
f(z(t))z′(t) =

∫ π

0

1

eit
ieitdt = iπ

C2 : z = e−it, 0 ≤ t ≤ π =⇒
∫
C2

dz

z
= −iπ

The upcoming definitions and theorems will help us generalize the following result: The
value for

∫
C

dz
z will vary by at most 2πi depending on the choice of path C. Until then,

we visit an example of how we may have to rethink our parametrization.

Example 25 : Compute
∮
C z

idz where we use the principal value and C is the unit circle.

Recall that zi is a multi-valued function! The problem requires us to work around the
principal branch cut along the negative real axis. We cannot use the standard
parametrization from (4.2), but instead set α = π. Then, we obtain a new
parametrization

z(t) = eit,−π ≤ t ≤ π =⇒
∮
C
zidz =

∮
C
eiLogzdz =

∫ π

−π
ei−itieitdt =

∫ π

−π
ie(i−1)tdt

=
i

i− 1
e(i−1)t

∣∣∣∣π
−π

=
1

2
(1− i)

(
eπ − e−π

)

Theorem 4.3: Integrals with Path Independence

Let f defined on a domainD ⊆ C be given, and let C be a curve. We say
∫
C f is path-

independent if its value only changes on the endpoint of C. Every contour integral∫
C f(z)dz over a contour in D is path-independent if and only if

∫
C f(z)dz = 0

around every closed contour. Or,

Every

∫
C
f is path independent ⇐⇒ Every

∮
C
f = 0

11
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The results of this theorem helps us generalize contour integrals between two points for
any given path! One of the most properties used in the proof of this theorem states that
for any two contours such that C = C1 ∪ C2,∫
C1
f(z)dz +

∫
C2
f(z)dz =

∫
C1
f(z)dz −

∫
−C2

f(z)dz. In other words, flipping the direction
of the path makes the contour integral negative!
Example 26 : Let C1, C2 be the contours in Example 24. We have that∫

C1

z2dz =

∫
C2

z2dz = −2

3

This is a nice inference from the theorem. In fact, any such C will give the same value for∫
C z

2. While we can argue that this is the case because the contour integral is
path-independent regardless of C, we need the following theorem to prove this.

Theorem 4.4: Fundamental Theorem of Calculus

Suppose f is continuous on an open domain D. Then,

f has an anti-derivative on D ⇐⇒ All

∫
C
f are path-independent

In such a case, if F ′(z) = f(z), then
∫
f = F (z1)− F (z0).

The largest takeaway from the Fundamental Theorem of Calculus is that: as long as f
has an anti-derivative, we no longer need to parametrize C!

Example 27 : Evaluate
∫
C z

3dz, where C is the line joining 1 + i to 1− i.

Because f(z) clearly has an anti-derivative, the FTC states that we can simply compute
the anti-derivative at our endpoints∫

C
z3dz =

1

4
z4
∣∣∣∣1−i

1+i

=
1

4

(
(1− i)4 − (1 + i)4)

)
=

1

4

(
8eiπ − 8e−iπ

)
= 0

Example 28 : Explain why the above theorem does not apply to
∫
C z.

We cannot simply define an anti-derivative for z because it is not holomorphic!
Therefore, we are required to parametrize C.

Example 29 : Define a domain D such that
∫
C

dz
z is guaranteed to be path independent.

This is equivalent to asking: where does f has an anti-derivative =⇒ where is it
holomorphic? We know that F (z) = log z + c, so we must take branch cuts into account.
If we let D be the domain of the complex numbers with exclusion of the branch cut, then
we gain path independence for all C.

12
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Theorem 4.5: Integral Estimation

(1) Suppose w : [a, b] → C is piecewise continuous. Then,∣∣∣∣∫ b

a
w(t)dt

∣∣∣∣ ≤ ∫ b

a
|w(t)|dt

(2) Suppose C is a contour with length L and let f be piecewise continuous on C.
Then |f(z)| is bounded by some M ≥ 0 on C, and∣∣∣∣∫

C
f(z)dz

∣∣∣∣ ≤ML

Example 30 : Estimate
∣∣∣∫C z+2i

z8+1
dz
∣∣∣ where C goes from 2 to 2i.

We first find the length of C. The Pythagorean Theorem tells us L = 2
√
2. To find such

M , we must find an upper bound for |z + 2i| and lower bound for |z8 + 1|. A useful result
from C is that the maximum distance from z to C is at either endpoint, so |z| ≤ 2. The
minimum distance can be found by bisecting the origin to C, which is ultimately the
distance from 0 to 1 + i. Therefore,

√
2 ≤ |z| ≤ 2. Having a two-sided inequality is crucial

for finding each bound.

For |z + 2i|, we use the upper bound of |z| =⇒ |z + 2i| ≤ |z|+ |2i| = 4.
For |z8 + 1|, we use the lower bound and the reverse triangle inequality:
|z8 + 1| ≥ ||z8| − |1|| = 15.
Hence, M = 4

15 and ∣∣∣∣∫
C

z + 2i

z8 + 1
dz

∣∣∣∣ ≤ML =
8
√
2

15

Example 31 : Let C be the arc of the circle |z| = 2 joining 2 to 2 + 2i. Show∣∣∣∫C z+4
z3−1

dz
∣∣∣ ≤ 6π

7 .

The process is a lot simpler as we are already given |z|. The length of C is 1
4(2π(2)) = π.

The upper bound for |z + 4| is |z + 4| ≤ |z|+ 4 = 6 and the lower bound for |z3 − 1| is
|z3 − 1| = |1− z3| ≥ |1− |z3|| = 7. ML = 6π

7 .

Example 32 : If C is the straight line joining the origin to 1 + i, show
∣∣∫

C z
3e2izdz

∣∣ ≤ 4.

L =
√
2. To find a bound for M , we can parametrize C as z(t) = (1 + i)t, 0 ≤ t ≤ 1. So,∣∣z3e2iz∣∣ = ∣∣∣(1 + i)3t3e2i(1+i)t

∣∣∣ = √
8
∣∣t3∣∣ ∣∣e2it∣∣ ∣∣e−2t

∣∣ ≤ √
8

Since e−2t ≤ 1 and |e2it| ≤ 1 using Euler’s Formula. Therefore, ML =
√
8 ·

√
2 = 4.

13
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Example 33 : If C is the boundary of the triangle with vertices 0, 3i, and −4, prove that∣∣∮
C(e

z − z)dz
∣∣ ≤ 60.

L = perimeter of triangle = 12. To find M , we find a bound for |ez − z|. We have that
|ez| = |ex| and 1

e4
≤ |ex| ≤ 1 and |z| = |z| ≤ 4 is the maximum distance from z to any

point on C. So, M = 1 + 4 = 5. We thus obtain ML = 60.

Theorem 4.6: Cauchy-Goursat

(1) Suppose C is a closed contour in a simply-connected regionD. If f is holomorphic
on D, then

∫
C f(z)dz = 0.

(2) Now, suppose C is a simple closed contour, oriented counter-clockwise. Let
C1, ..., Ck be non-intersecting simple closed contours in the interior of C, oriented
clockwise. If f(z) is holomorphic on the region between and including C and the
interior boundaries C1, ..., Ck, then∫

C
f(z)dz +

k∑
j=1

∫
Cj

f(z)dz = 0

We are told that if f is holomorphic on and inside C, then its integral is 0.

Example 34 : Explain why for each f(z) given below,
∮
C f(z)dz = 0 when the contour C

is the unit circle |z| = 1.

(a) f(z) = z2

z+3 : We have a discontinuity at z = −3, which certaintly does not lie inside or
on C.
(b) f(z) = ze−z: f is entire!
(c) f(z) = Log(z + 2): f is holomorphic on all points except for the branch cut:
Rez ≤ −2, Imz = 0. The branch cut lies entirely outside of C, so f is holomorphic in C.

By the Cauchy-Goursat Theorem, we can conclude that
∮
C f(z)dz = 0 for all three

choices of f(z).

Corollary 4.7: Nested Contours

Suppose C1, C2 are non-intersecting positively oriented simple closed contours. If f
is holomorphic on the region between and including the curves, then∮

C1

f(z)dz =

∮
C2

f(z)dz

Example 35 : Let C1 be the square with sides x = ±1, y = ±1, and C2 the circle |z| = 4.
Explain why

∮
C1

1
3z2+1

dz =
∮
C2

1
3z2+1

dz.

14
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C1 is entirely contained in C2, therefore they are non-intersecting. f is holomorphic
except at the points z = ± 1√

3
, interior to both C1, C2. Therefore, f is holomorphic in the

space between C1 and C2, so their closed contour integrals are equal.

Theorem 4.8: Cauchy-Integral Formula

Suppose f is holomorphic everywhere on and inside a simple closed contour C. If
z0 is any point inside C, then

f(z0) =
1

2πi

∮
C

f(z)

z − z0
dz

More generally, if f is infinitely differentiable at z0 with nth derivative

f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz

To generalize, if f(z) is holomorphic everywhere in C, then its contour integral is 0 by
Cauchy-Goursat. If it is holomorphic except for a point z0 in C, we must apply the
Cauchy-Integral formula by and show∮

C

f(z)

(z − z0)n+1
dz =

2πif (n)(z0)

n!

Example 36 : Let C be the square with x = 0, 1 and y = 0, 1. Evaluate the integral∮
C

1
z−adz when

(a) a is exterior to the square: The closed contour is zero by the Cauchy-Goursat
Theorem.
(b) a is interior to the square: We have to use the Cauchy-Integral Formula. Here,
f(z) = 1 and we evaluate f(a)∮

C

1

z − a
dz = 2πif(a) = 2πi.

Example 37 : Let C denote the boundary of the square with sides x = ±2, y = ±2.
Evaluate

∮
C

ez+e−z

z(z2+16)
.

We have that z(z2 + 16) = 0 when z = 0, z = ±4i, for which z = 0 is inside C. Therefore

we evaluate f(0) where f(z) = ez+e−z

z2+16
. Therefore,∮

C

ez + e−z

z(z2 + 16)
= 2πif(0) = 2πi · 1

16
=
πi

8
.

Example 38 : Let C denote the circle of radius 3 centered at z = −i. Evaluate∮
C

ez

(z2−4iz−3)2
dz.

15
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Factoring the denominator gives (z − i)(z − 3i) =⇒ z = i, 3i. Because z = i lies inside C,
we compute f ′(i), because we have a squared term.

f(z) =
ez

(z − 3i)2
=⇒ f ′(z) =

ez((z − 3i)2 − 2(z − 3i))

(z − 3i)4
=⇒ f ′(i) =

1

64
ei(4− i)

Therefore ∮
C

ez

(z2 − 4iz − 3)2
dz = 2πif ′(i) =

1

32
eiπ(1 + 4i)

where ei = cos 1 + i sin 1.

Lemma 4.9: Cauchy’s Inequality

If f is holomorphic on and inside the circle C of radius R centered at z0 and |f(z)| ≤
M on C, then ∣∣∣f (n)(z0)∣∣∣ = n!

2π

∣∣∣∣∮
c

f(z)

(z − z0)n+1
dz

∣∣∣∣ ≤ n!M

Rn
.

One important application of this lemma is that we can prove interesting qualities about
entire and bounded functions!

Example 39 : Suppose f is entire and that |f(z)| < c|z| for some constant c ∈ R+. Prove
that f(z) = kz where k ∈ C satisfies |k| ≤ c.

Idea: Use Cauchy’s Inequality. If we let CR be the disk of radius R such that |z − z0| ≤ R
∀z0 ∈ C, we can apply Cauchy’s Inequality as such (since f entire =⇒ f is holomorphic
on the disk): Since |z| = |z0|+R,

|f ′′(z0)| ≤
2c(|z0|+R)

R2
→ 0 as R→ ∞.

Here n = 2 and M = c(|z0|+R). Therefore, f ′′(z) = 0 ∀z ∈ C, implying that f is at most
a linear polynomial f(z) = kz, where |f(z)| ≤ c|z| =⇒ |k| ≤ c. In fact, we can extend this
to all linear polynomials, if |f(z)| ≤ |cz + d|, then f is either constant or linear in z!

Theorem 4.10: Liouville’s Theorem

Every bounded, entire function is constant.

Example 40 : Recall f(z) = sin z. If z only consists of the real numbers, we can say f is
bounded by [−1, 1]. However, for z ∈ C, sin z is a linear combination of ez and e−z, which
are unbounded functions. Therefore, Liouville’s thoerem implies our intuition that sin z is
non-constant.

16
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Corollary 4.11: Fundamental Theorem of Algebra

Every non-constant polynomial has a root in C.

Theorem 4.12: Maximum Modulus Principle

Suppose f is holomorphic and non-constant on a connected, open domain D. Then
|f(z)| has no maximum value on D.

Example 41 : Let f(z) = 2z2 + i on the upper semi-disk D with radius 1. Find the
maximum and minimum values on D.

We decompose the boundary into two parts:

� The curve along r = 1: It is easier to verify this by writing f in polar form:
f(z) = (

√
2eiθ)2 + 1 = 2e2iθ + 1, and so

|f(z)| =
√
(2 cos(2θ))2 + (2 sin(2θ) + 1)2 =

√
5 + 4 sin(2θ). It is straightforward to

verify that the maximum and minimum occur when θ = π
4 and θ = −π

4 ,
corresponding to values 3 and 1, respectively.

� Along y = 0, |x| ≤ 1. |f(z)| =
√
4x4 + 1. Because f is strictly increasing, the

maximum and minimum are
√
5 and 1, respectively.

Therefore the maximum and minimum values of f on D are 3 and 1, respectively.

Example 42 : Let f(z) be a non-zero holomorphic function on a closed bounded domain.
By considering g(z) = 1

f(z) , show that the minimum value of |f(z)| also occurs on the
boundary.

We have that g(z) is also holomorphic on D. Also, we have that g(z) is non-constant
(because f is not entire!). Therefore, by the Maximum Modulus Principle, |g(z)| has no
maximum in D, but rather on D. Therefore, |f(z)| = 1

|g(z)| has its minimum when g has
its maximum, which also occurs on the boundary.

Example 43 : Consider f(z) = exp
(
−|z|2

)
defined on the unit disk |z| ≤ 1. What is its

maximum modulus, and where is it found? Why doesn’t this contradict the maximum
modulus principle?

We have that |f(z)| = f(z), and since |f(z)| is strictly decreasing, the maximum value is
obtained at z = 0, which is inside of the disk! However, this does not contradict the
Maximum Modulus Principle because f(z) is not holomorphic on D for it depends on a
non-holomorphic function z (Remember we can write |z|2 = zz). Therefore, f is not
holomorphic =⇒ |f(z)| is not guaranteed to have its maximum value on D.

17
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5 Series and Analytic Functions

Before diving into important results of series in complex analysis, we introduce this
section with some (hopefully!) familiar results.

Definition 5.1: Infinite Series and Convergence

The nth partial sum of a sequence (zn)
∞
n=0 is the complex number

sn =
n∑

k=0

zk = z0 + ...+ zn

The (infinite) series
∑
zn converges if (sn) converges, and diverges otherwise.

We obtain absolute convergence if
∑

|zn| converges and conditional convergence if
it converges but not absolutely.

These statements are exactly the same as in real analysis. In addition, the general rules
and tests also apply:

Theorem 5.2: Basic Results of Series

The following results from series with real numbers also apply to complex numbers

� Linearity between multiple series

� Common convergence tests (i.e. ratio, root, comparison)

Now, we introduce the definition power series, and generalize this definition onto disks.

Definition 5.3: Power Series and Analytic Functions

A power series centered at z0 is the function

p(z) =
∞∑
n=0

an(z − z0)
n

where z0, an ∈ C are coefficients. In addition, we say f : D → C is analytic
if every z0 ∈ D has a neighborhood on which f(z) equals a power series en-
tered at z0. More precisely, to be analytic at a point z0 is to be analytic on
some neighborhood of z0. The radius, or disk of convergence is expressed as
R0 := sup{|z − z0 : p(z) converges}, or the maximum radius of the disk in which f
converges to its power series.

18
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We will discuss analytic functions later, but the important result is that analytic
functions, for each z0, will equal a power series centered at z0, with unique coefficients.

Example 44 : Derive a power series representation for f(z) = 1
1−z . Find and sketch the

disks of convergence corresponding to the centers z0 = −1, 1 + i, 3− 2i.

We recall the formula for a geometric series. If |z| < 1, then
∑
zn = 1

1−z . Let z0 ̸= 1, then

f(z) =
1

1− z
=

1

1− z0 − (z − z0)
=

1

1− z0

[
1

1− z−z0
1−z0

]
=

1

1− z0

∞∑
n=0

(
z − z0
1− z0

)n

Recall that we require
∣∣∣ z−z0
1−z0

∣∣∣ < 1 ⇐⇒ |z − z0| < |1− z0|. Therefore, f(z0) converges to a

power series centered at z0 with radius |1− z0|, provided z0 ̸= 1. The disks of radius for
the desired values of z0 are drawn below:

Example 45 : Apply the same idea from Example 44 to find a power series centered at
z0 ̸= i which equals the function g(z) = 2

1+iz . What is its radius of convergence?

We can follow the same computation in Example 44, which would lead us to the following
result: Suppose z0 ̸= i. Then, g(z0) converges to the power series

2

1 + iz0

∞∑
n=0

(
(−i)(z − z0)

1 + iz0

)n

centered at z0, with radius of convergence R0 = |1 + iz0|.

19
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Example 46 : Find all values of z for which the series
∑ 1+i

(n+1)(4+3i)n (z−1+2i)n converges.

To help simplify the expression, let w be a function of z such that w = z−1+2i
4+3i . Then, we

can rewrite the series as

(1 + i)
∑ wn

n+ 1

We want the series to converge, so we want |w| < 1. This implies∣∣∣∣z − 1 + 2i

4 + 3i

∣∣∣∣ < 1 =⇒ |z − 1 + 2i| < |4 + 3i| = 5 =⇒ |z − 1 + 2i| < 5.

Therefore, we have a power series centered at z0 = 1− 2i with radius of convergence
R0 = 5.

Theorem 5.4: Taylor’s Theorem

Suppose f(z) is infinitely differentiable at z0. Its Taylor Series about z0 is the power
series

∞∑
n=0

f (n)(z0)

n!
(z − z0)

n

If f(z) is holomorphic on a disk |z− z0| < R, then f(z) equals its Taylor Series with
no error term. Or,

f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)

n on the disk.

Example 47 : Write the Taylor Series for f(z) = ez about z0 = 0, z0 = iπ. What can be
said about f?

About z0 = 0, we call such series the Maclaurin Series. Recall that

∞∑
n=0

zn

n!
.

About z0 = iπ, we find that f (n)(z0) = eiπ = −1. Therefore, we obtain the following
Taylor Series

∞∑
n=0

− 1

n!
(z − iπ)n.

Because ez is entire, f will equal its Taylor Series, and in fact, everywhere!
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Example 48 : Find the Taylor Series of cos z centered about z0 = i.

We first compute the Taylor coefficients. Treat two separate cases (as the derivative of
± cos z alternate between ± sin z and itself) accordingly:

f (2n)(i) = (−1)n cos i = (−1)n
ei

2
+ e−i2

2
= (−1)n

e+ e−1

2

f (2n+1)(i) = (−1)n sin i = (−1)n
ei

2 − e−i2

2i
= (−1)ni

e− e−1

2

Combining both coefficients we obtain

cos(z − i) =
∞∑
n=0

(−1)n(e+ e−1)

2(2n)!
(z − i)2n +

(−1)n(e− e−1)

2(2n+ 1)!
i(z − i)2n+1

In fact, we can take out the constant terms, and find that

cos(z − i) = cos i cos z + sin i sin z

which is the additive identity for cosine!

Example 49 : Consider f(z) = 1
z . For any z0 ̸= 0, find the Taylor Series of f(z) about z0.

What is its disk of convergence?

The derivatives of f at z0 are

f ′(z0) = − 1

z20
, f ′′(z0) =

2

z30
, ..., f (n)(z0) =

(−1)nn!

zn+1
0

Hence

f(z) =

∞∑
n=0

(−1)n

zn+1
0

(z − z0)
n =

1

z0

∞∑
n=0

(z − z0)
n =

1

z0

∞∑
n=0

(−1)n

zn0
(z − z0)

n

As for the disk of convergence, we want
∣∣∣ z−z0

z0

∣∣∣ < 1, implying that |z − z0| < |z0| where f
converges, except for when z0 = 0.

Corollary 5.5: Holomorphic and Analytic Functions (Pt. 1)

Every holomorphic function is analytic.

We will observe the converse later.
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Example 50 : Consider f(z) = Logz,D = C\{non-pos x-axis}. Derive its Taylor Series
centered at z0 = i and identify its disk of convergence.

f(i) = Logi =
iπ

2
, f (n)(i) =

(−1)n−1(n− 1)!

in

=⇒ f(z) = Logz =
iπ

2
+

∞∑
n=1

(−1)n−1

nin
(z − i)n

On the disk |z − i| < 1, Logz will equal its Taylor Series. On the boundary circle, f will
not converge when z = 0 (because of the branch cut!).

Definition 5.6: Uniform Convergence

Suppose f(z) =
∑
an(z − z0)

n is a power series with nth partial sum sn(z) and
remainder ρn(z) = f(z) − sn(z). We say that the series converges uniformly on a
domain D if

∀ϵ > 0, ∃N such that n > N, z ∈ D =⇒ |ρn(z)| < ε.

If R0, R1 are radii of convergence of a power series centered at z0 such that R1 < R0,
then the series converges uniformly on the closed disk |z − z0| ≤ R1.

The notion of uniform convergence is crucial in establishing equivalence between
holomorphic and analytic functions, as we will see in the upcoming theorems/corollaries:

Theorem 5.7: Term-by-term Integration

Suppose f(z) =
∑
an(z−z0)n has radius convergence R0. Let g(z) on some contour

C in the open disk of convergence |z − z0| < R0. Then, we may integrate term-by-
term: ∫

C
g(z)f(z)dz =

∞∑
n=0

an

∫
C
g(z)(z − z0)

ndz

As for the proof, we revisit the ML-inequality and use the definition of uniform
convergence (since C is compact) to control the size of∣∣∫

C g(z)f(z)dz −
∑n

k=0 ak
∫
C g(z)(z − z0)

kdz
∣∣.

22



Ryan Gomberg Math 147 (Complex Analysis) Notes Page 23 of 50

By choosing such g(z), we now show equivalence between holomorphic and analytic
functions, as well as proving unique representation for analytic functions.

Corollary 5.8: Holomorphic and Analytic Functions (Pt. 2)

Suppose f(z) =
∑
an(z − z0)

n has positive radius of convergence R0. We establish
the following:

(1) Term-by-term integration: Fix g(z) = 1. Then,

∫
C
f(z)dz =

∞∑
n=0

an

∫
C
(z − z0)

ndz =
∞∑
n=0

an
n+ 1

(z − z0)
n+1

∣∣∣∣∣
C(start)

C(end)

(2) Holomorphicity : We see by (1) that
∫
C f is path-independent for any contour in

the open disk of convergence, implying that f is holomorphic on that disk. So, all
analytic functions are holomorphic.

(3) Term-by-term differentiation: Define g(z) = 1
2πi(z−w)2

for |w − z0| < R0. A

simple application of Cauchy’s Integral Formula (4.8) to compute f ′(w) suffices.

(4) Unique representation: The power series
∑
an(z − z0)

n is indeed the Taylor

Series of f(z), with unique coefficients an = f (n)(z0
n .

The conclusions of this corollary are significant:

� Since analyticity and holomorphicity are equivalent now, we will from now on refer
to holomorphic functions as analytic

� We can now compute Taylor and Maclaurin series through factoring, differentiation,
and integration

� Regardless of how we obtain the series we want, the function is guaranteed to equal
said series!

Example 51 : Find a power series representation and the radius of convergence for
f(z) = z

3−z about z0 = 0.

We want to manipulate f to obtain a similar form 1
1−u . This can be obtain by factoring

out 3 from the denominator.

z

3− z
=
z

3

(
1

1− z
3

)
=
z

3

∞∑
n=0

(z
3

)n
=

∞∑
n=0

(z
3

)n+1
=⇒ |z| < 3 =⇒ R0 = 3.
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Example 52 : Find a power series representation and the radius of convergence for
f(z) = z sin z2 about z0 = 0.

f(z) = z

( ∞∑
n=0

(−1)nz4n+2

(2n+ 1)!

)
=

∞∑
n=0

(−1)nz4n+3

(2n+ 1)!

A simple application of the ratio test limn→∞

∣∣∣an+1

an

∣∣∣ reveals that f(z) converges to its

power series everywhere and R0 = ∞.

Example 53 : By expressing f(z) as a Maclaurin series, show that it is entire

f(z) =

{
1
z2
(1− cos z) if z ̸= 0

1
2 if z = 0

First, expand cos z into its Maclaurin Series.

f(z) =
1

z2

(
1−

∞∑
n=0

(−1)nz2n

(2n)!

)

Notice how 1 is the first term in the series. Therefore, we can re-index the series since the
first term will cancel out with 1.

f(z) =
1

z2

( ∞∑
n=1

(−1)nz2n

(2n)!

)
=

∞∑
n=1

(−1)nz2n−2

(2n!)

If we let k = n− 1, then we obtain a Maclaurin series indexed at 0.

f(z) =

∞∑
k=0

(−1)kz2k

(2k + 2)!
, f(0) =

1

2
.

Therefore, we verify that f equals its Maclaurin series everywhere and so it is entire.

Example 53 : Suppose f(z) is analytic and non-constant at z0. Prove that

∃R > 0 such that 0 < |z − z0| < ϵ =⇒ f(z) ̸= f(z0)

To what extent can you weaken the hypothesis f ′(z0) ̸= 0?

Let f(z) be analytic at z0. Then, it equals its Taylor Series centered around z0:

f(z) = f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2
(z − z0)

2 + ...+
f (n)(z0)

n!
(z − z0)

n

⇐⇒ f(z)− f(z0) = (z − z0)

(
f ′(z0) +

1

2
f ′′(z0)(z − z0) + ...+

1

n!
f (n)(z0)(z − z0)

n−1

)
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Let g(z) = f ′(z0) +
1
2f

′′(z0)(z − z0) + ...+ 1
n!f

(n)(z0)(z − z0)
n−1 such that

g(z)(z − z0) = f(z)− f(z0). Because f is non-constant, f ′(z0) ̸= 0 =⇒ g(z0) ̸= 0. Since g
is analytic, it is also continuous, and so ∃R > 0 such that g(z) ̸= 0 for |z − z0| < R. So, if
0 < z − z0 < R, f(z)− f(z0) = (z − z0)g(z). Since z ̸= z0, and g(z) ̸= 0, f(z)− f(z0) ̸= 0,
as required.

We can weaken the hypothesis by saying that at least one ordered derivative, f (k)(z0), is
nonzero.

Corollary 5.9: Analytic Continuation

Suppose f(z), g(z) are analytic on an open connected domain D, and that f(z) =
g(z) on some contour C in D. Then f(z) = g(z) on D.
(f : D → C, g : E → C, D ⊆ E).

Example 54 : Consider the Maclaurin series f(z) =
∑∞

n=0(−1)nz2n on the disk |z| < 1.
Show that h(z) = 1

z2+1
is the analytic continuation of f(z) to C\{i,−i}.

We have that z2 + 1 = 0 ⇐⇒ z = ±i. So, h is analytic on C\{i,−i}. Now, we find a
power series representation for h.

1

1 + z2
=

1

1 + (−z)2
=

∞∑
n=0

(−1)n(zn)2 =
∞∑
n=0

(−1)nz2n

which is the Maclaurin series for f . Therefore, f(z) = h(z) for |z| < 1 and h is the
analytic continuation of f(z) to C on {−i, i}.

Example 55 : Find the analytic continuation of f(z) = 2 cos z2−2+z4

z8
(D = C\{0}) to

E = C.

Consider cos z2 =
∑∞

n=0
(−1)n

(2n)! z
4n (for all z). Then, on D,

f(z) =
2

z8

∞∑
n=2

(−1)n

(2n)!
z4n = 2

∞∑
n=2

(−1)n

(2n)!
z4(n−2)

By re-indexing the series, we found a suitable power series representation for f(z).
Therefore, f(z) is analytic and it converges to the power series everywhere, including at
zero. Using the definition, we choose

g(z) = 2

∞∑
n=2

(−1)n

(2n)!
z4(n−2).
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Definition 5.10: Zeros of Analytic Functions

Suppose z0 is a zero of an analytic function f(z).

� We say that z0 is a zero of order m ≥ 1 if f (m)(z0) is the first non-zero
derivative. A zero of order 1 is also called a simple zero.

� If all derivatives are zero, z0 is a non-isolated zero: plainly f(z) ≡ 0 on some
disk |z − z0| < R.

Theorem 5.11: Order of Zeros Pt. 1

An analytic function f(z) has a zero z0 of orderm if and only if f(z) = (z−z0)mψ(z)
where ψ(z) is analytic at z0 and ψ(z0) ̸= 0. Indeed, on some disk |z − z0| < R,

f(z) =
∞∑

n=m

f (n)(z0)

n!
(z − z0)

n = (z − z0)
mψ(z).

Theorem 5.12: Isolated Zeros

Suppose z0 is a zero of an analytic function f(z)

� If z0 has order m, then there exists a punctured disk 0 < |z−z0| < R on which
f(z) ̸= 0. Or, we say z0 is isolated

� If z0 is non-isolated and the domain D of f(z) is open and connected, then
f(z) ≡ 0 on D.
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6 Laurent Series, Residues, and Poles

We used Taylor Series to find a series representation of an analytic function on a disk.
While it is still an incredibly powerful tool, we are not always guaranteed to extract
useful information about a function’s behavior at certain points. Therefore, we motivate
a new type of series whose convergence is not always over a disk.

Example 56 : Let f(z) = 1
z(1−z) . If we wanted to find its Taylor Series centered about

z = 0, we simply multiply the Taylor Series for 1
1−z by 1

z :

1

z

∞∑
n=0

zn =
∞∑
n=0

zn−1.

which is valid on the punctured disk 0 < |z| < 1. Alternatively, if we wanted to find the
Taylor Series centered around z = 1

2 , we can complete the square in the denominator and
get

f(z) =
1

z(1− z)
=

1

−(z − 1
2)

2 + 1
4

=
4

1− (2z − 1)2
= 4

∞∑
n=0

(2z − 1)2n.

The second series has a much smaller domain compared to what the first series gives. In
fact, the first series orbits about z = 0, which is important if we think about curves that
are also contained within the disk and also orbit the origin. This is the main advantage of
the first series and is the result that we will find with series that have negative terms.
The disks of convergence for both series are shown below

Note that the first series can be re-indexed as
∞∑

n=−1

zn

This introduces the coefficient a−1 for z−1. Such terms are the foundation of the Laurent
Series. In general, we can consider a series with infinitely many negative and positive
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terms.
∞∑

n=−∞
an(z − z0)

n =
∑
n≥0

an(z − z0)
n +

∑
n≤−1

an(z − z0)
n

If we let w = (z − z0)
−1, then

∞∑
n=−∞

an(z − z0)
n =

∑
n≥0

an(z − z0)
n +

∑
n≥1

a−nw
n.

Hence the series with infinite terms is really just a sum of two Taylor Series, each with
their own radius of convergence R1, R2. Naturally, in order for the main series to
convergence, it must converge within both radii of convergence. We find that such series
will converge on an annulus.

Theorem 6.1: Annulus of Convergence

Let
∑∞

n=−∞ an(z − z0)
n be a series. Then, denote

R1 = inf{|z − z0| : f(z) converges}

R2 = sup{|z − z0| : f(z) converges}

The series then converges absolutely to a continuous function on the (open) annulus
of convergence R1 < |z − z0| < R2 and uniformly on any subannulus. We have
divergence if |z − z0| < R1 or |z − z0| > R2.
Similar to power series, convergence must be tested for both boundaries.

From the definition, if R1 = 0, then we reduce to a punctured disk. We can also have
R2 = ∞. Combining both ideas (0 < |z − z0| <∞) gives us convergence everywhere
except for z0 = 0.

Compared with power series, uniform convergence over an annulus lends the same results:
the series is continuous, differentiable and integrable term-by-term, and analytic.
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Definition 6.2: Laurent Series

Let f(z) be analytic on an annulus R1 < |z − z0| < R2 and C be any simple closed
curve in the annulus which orbits z0. The Laurent Series of f(z) on this annulus is
the series

∞∑
n=−∞

an(z − z0)
n where an =

1

2πi

∮
C

f(z)

(z − z0)n+1
dz.

The terms an are the corresponding Laurent coefficients.

If f(z) is analytic on the disk |z − z0| < R2, then the Taylor and Laurent Series are
equivalent. This is a rare case; Laurent Series are generally the extrapolation of Taylor
Series and equivalence is harder to obtain when dealing with multiple regions.

Example 57 : We revisit the function f given in Example 56, which is analytic on the
annulus 0 < |z| < 1. With C as the circle of radius 1

2 centered at the origin, we can
compute its Laurent Series by first rewriting it as f(z) = 1

z(1−z) =
1
z + 1

1−z through
partial fraction decomposition. Then, we find a general expression for the coefficients an

an =
1

2πi

∮
C

f(z)

zn+1
dz =

1

2πi

∮
C

1

zn+2(1− z)
dz

The integral can computed using Cauchy’s Integral Formula:

1

(n+ 1)!

dn+1

dzn+1
|z=0(1− z)−1 = (1− z)−n−1|z=0 = 1 if n ≥ −1

If n ≤ 2, then 1
zn+2(1−z)

is analytic on/inside C and so an = 0. Therefore, the Laurent
Series is

∞∑
n=−1

zn

We now look at some more examples of finding Laurent Series representations of
functions.

Example 58 : Find a Laurent series representation for f(z) = 3
z2
e2z and compute∮

C f(z)dz where C is a simple closed curve encircling the origin.

We use the Taylor Series for e2z, then simplify and re-index the series

f(z) =
3

z2

∞∑
n=0

(2z)n

n!
=

∞∑
n=0

3 · 2n · zn−2

n!
=

∞∑
n=−2

3 · 2n · zn

(n+ 2)!
.

Cauchy-Goursat tells us we need only look at when n = −1, or the coefficient a−1. So,∫
C f(z)dz = 2πi · 6 = 12πi.
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Example 59 : Find a Laurent Series centered at z0 = 0 for the function

f(z) =
1

z(z − 2i)
=
i

2

(
1

z
− 1

z − 2i

)
on the domain D1 = {z : 0 < |z| < 2}.

Idea: Extract a power series for 1
z−2i as we normally would.

1

z − 2i
= − 1

2i

(
1

1− z
2i

)
=
i

2

∞∑
n=0

zn

(2i)n
=⇒ f(z) =

i

2

(
1

z
+

∞∑
n=0

zn

(2i)n

)
=

i

2z
−

∞∑
n=0

zn

2n+2in
.

Example 60 : Using the same function f from Example 59, find a Laurent Series centered
at z0 = 0 on the domain D2 = {z : |z| > 2}
Idea: We want the series to converge on an infinitely large region, so we want to construct
a series of only negative powers. This can be obtained by factoring out 1

z from 1
z−2i .

1

z − 2i
=

1

z

(
1

1− 2i
z

)
=

1

z

∞∑
n=0

(
2i

z

)n

=

∞∑
n=0

(2i)n

zn+1

=⇒ f(z) =
i

2

(
1

z
−

∞∑
n=0

(2i)n

zn+1

)
=

i

2z
−

∞∑
n=0

2n−1in+1

zn+1
=

∞∑
n=1

2n−1in+1

zn+1

If we wanted to find a Laurent Series centered at z0 = 2i on D1, we would need to rewrite
z(z − 2i) into the form k

1−(z−2i)2
, where k ∈ C.

Example 61 : Find a Laurent Series for f(z) = z
(z−1)(z−3) on the punctured disk

0 < |z − 1| < 2.

Idea: First use partial fractions to obtain the sum A
z−1 + B

z−3 , then rewrite the second
fraction to obtain a power series centered about z = 1.

z

(z − 1)(z − 3)
=

A

z − 1
+

B

z − 3
=⇒ A(z − 3) +B(z − 1) = z =⇒ A = −1

2
, B =

3

2

Now, find the power series representation for 3
2 · 1

z−3 about z = 1:

3

2
· 1

z − 3
=

3

2
· 1

(z − 1)− 2
= −3

4
· 1

1− z−1
2

= −3

4

∞∑
n=0

(z − 1)n

2n
= −3

∞∑
n=0

(z − 1)n

2n+2

Therefore,

f(z) = − 1

2(z − 1)
− 3

∞∑
n=0

(z − 1)n

2n+2
on 0 < |z − 1| < 2.

Likewise, if we wanted to find the Laurent Series on 0 < |z − 3| < 2, we find a power
series representation for 1

z−1 about z = 3.
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Example 62 : Let a be a complex number. Show that

a

z − a
=

∞∑
n=1

an

zn
whenever |a| < |z|.

Apply the same idea from Example 60:

a

z − a
=
a

z

(
1

1− a
z

)
=
a

z

∞∑
n=0

an

zn
=

∞∑
n=0

an+1

zn+1
=

∞∑
n=1

an

zn

We want
∣∣an
zn

∣∣ < 1, which implies |an| < |zn| ⇐⇒ |a| < |z|.

After going through a few examples, the following theorem and corollary should feel
trivial:

Theorem 6.3: Laurent’s Theorem

An analytic function on an open annulus equals its Laurent Series

Corollary 6.4: Properties of Laurent Series

The notions of term-by-term integration/differentiation, analyticity, and uniqueness
from power series also apply to Laurent Series.
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We now want to further investigate easier ways of computing integrals of analytic
function. Let us translate the concept of discontinuities from real analysis to complex
analysis with some new vocabulary:

Definition 6.5: Singularities, Residues, and Poles

Say z0 is an isolated singularity of f(z) if the function is analytic on a punctured
disk 0 < |z − z0| < R, but not at z0 itself. Laurent’s Theorem tells us that f(z)
equals its Laurent series on said domain, so long as the curve C encircles z0.

The residue of f(z) at z0 is the coefficient a−1

Resz=z0f(z) = a−1 =
1

2πi

∮
C
f(z)dz

The following forms of singularities can be retrieved from the Laurent Series

Removable singularity : The Laurent series is a Taylor series, meaning there are
no negative powers and the residue is naturally zero. The series f(z) extends
analytically to z0.

Pole of order m: The highest negative power in the Laurent series is (z − z0)
−m. A

simple pole is a pole of order 1, double pole for order 2, etc...

Essential singularity : The Laurent series has infinitely many negative terms

Example 63 : Determine the type of singularity of z0 = 0 in f(z) = sin z
z .

For this problems, we want to first expand out the Laurent Series and search for negative
terms, if they exist.

f(z) =
1

z

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1 =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n = 1− 1

6
z2 + ...

There are no negative terms, so z0 = 0 is a removable singularity. Consequently,
Resz=0 = 0.
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Example 64 : Determine the type of singularities of f(z) = 1
z(z−i)2

.

To obtain a better understanding, we rewrite f using partial fractions:

f(z) =
1

z(z − i)2
=
A

z
+

B

z − i
+

C

(z − i)2
.

There is a simple pole at z = 0 with Resz=0 = A and a double pole at z = i with
Resz=i = B (remember we only look at the coefficient for the 1

z−i term!).

Example 65 : Identify the type of singularity for f(z) = 1−e2z

z4
and compute the residue.

Once again, find the Laurent Series of f(z) = 1− e2z and divide by z4.

1− e2z = 1−
∞∑
n=0

(2z)n

n!
=

∞∑
n=1

(2z)n

n!
=⇒ 1

z4
(1− e2z) =

∞∑
n=1

2nzn−4

n!
= −

∞∑
n=−3

2n+4zn

(n+ 4)!
.

Since the negative coefficients go up to a−3, we have a pole of order 3 and

Resz=0f(z) = a−1 =
23

3!
=

4

3
.

Example 66 : Compute the residue at z = 0 of g(z) = z cos
(
1
z

)
.

The Laurent Series of g is

g(z) = z

∞∑
n=0

(−1)n

z2n(2n)!

∞∑
n=0

(−1)n

z2n−1(2n)!
Resz=0g(z) = a−1 = −1

2

IMPORTANT : Find the n that gives the z−1 term, which in this case is if n = 1.

Theorem 6.6: Cauchy’s Residue Theorem

Let f(z) be analytic on and inside a simple closed contour C, except at finitely many
singularities z1, ..., zn. Then∮

C
f(z)dz = 2πi

n∑
k=1

Resz=zkf(z).

If C is closed and orbits zk counter-clockwise λk times, then∫
C
f(z)dz = 2πi

n∑
k=1

λkResz=zkf(z).
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Example 67 : Look at the below diagram and compute
∮
C

(
3
z + 1

z2
+ 5i

z−2 + 1
z−1−2i

)
dz.

f(z) is clearly analytic except when z = 0, 2, and 1 + 2i.
We compute f(z) about each contour integral, or namely,(∮

C1
+
∮
C2

+
∮
C3

+
∮
C4

+
∮
C5

)
f(z)dz. We ultimately want to

check whether the each contour contains the specified singular-
ity. For example, 3

z has the simple pole z = 0, so∮
C1

f(z)dz = 3(2πi) = 6πi.

Recall that even though 1
z2

has a double pole at z = 0, its integral
around C1 is zero by the definition of residues. The other singu-
larites lie outside C1, so their integrals are also zero. Following
similar logic for C2 and C3 give∮
C2

f(z)dz = 5i

∮
C2

dz

z − 2
= 5i(2πi) = −10π,

∮
C3

f(z)dz =

∮
C3

dz

z − 1− 2i
= 2πi.

The integrals around C4 and C5 are more interesting. The analyticity of f(z) on/in C4

implies its analyticity over C2 and C3. Hence,∮
C4

=

∮
C2

dzf(z) +

∮
C3

f(z)dz = 2π(i− 5)

For C5, notice how C5 encircles C2 counter-clockwise but C1 clockwise. Therefore,∮
C5

=

∮
C2

f(z)dz −
∮
C1

f(z)dz = 2πi− 10π − 6πi = −2π(5 + 3i)

Cauchy’s Residue Theorem really tells us that the contours C1, C2, C3 are encircled by
other contours and we need only compute

∮
C1
,
∮
C2
,
∮
C3

by a linear combination of how
many times λk a singularity zk is orbited in a counter-clockwise direction. So,∫

C
f(z)dz = λ1

∮
C1

f(z)dz + λ2

∮
C2

f(z)dz + λ3

∮
C3

f(z)dz = 6πiλ1 − 10πλ2 + 2πiλ3.
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Example 68 : Use Cauchy’s Residue Theorem to compute
∮
C

e−z

(z−1)2
dz if C is the circle

|z| = 3.
The (essential) singularity z = 1 lies within C, so we are free to apply Cauchy’s Residue
Theorem. We compute the residue by finding a−1, for which we use Cauchy’s Integral
Formula

a−1 =
1

2πi

∮
C

e−z

(z − 1)2
dz =

2πi

2πi
f ′(1) = −1

e
=⇒

∮
C

e−z

(z − 1)2
dz = −2πi

e
.

Example 69 : Evaluate
∮
C z

2e
1
z dz where C is the circle C is the unit circle.

z2e
1
z = z2

∞∑
n=0

1

zn(n!)
=

∞∑
n=0

1

zn−2(n!)
=⇒ Resz=0f(z) =

1

3!
=

1

6
=⇒

∮
C
z2e

1
z dz =

πi

3
.

We use n = 3 to obtain the residue.

Example 70 : Compute
∮
C

z+1
z2−2z

dz where C is the circle |z| = 3.

First note that z+1
z2−2z

= z+1
z(2−z) . With two different singularites, we must find the residues

of f(z) at z = 0 and z = 2.

We can find an expression for f using partial fractions:

f(z) = − 1

2z
+

3

2(z − 2)
=⇒ Resz=0f(z) = −1

2
,Resz=2f(z) =

3

2

as they are just the z−1 coefficients. Hence, we have∮
C
f(z)dz = 2πi (Resz=0f(z) + Resz=2f(z)) = 2πi.

Now, we want to look at the relationship between poles and residuals.

Theorem 6.7: Poles and Residuals, Part 1

Let f(z) have a pole of order m at z0. Then, f(z) = (z − z0)
−mϕ(z) where ϕ is

analytic and nonzero. In such a case,

Resz=z0f(z) =
ϕ(m−1)(z0)

(m− 1)!

In the case of a simple pole, Res = ϕ(z0).

Let’s look an at example in which we compute the integral of a function containing poles
of different orders:
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Example 71 : Compute
∮
C

(
3z(z−i)

(z−2i)2(z+1)

)
dz.

We investigate the residuals at zero points: The simple pole z1 = −1 and z2 = 2i.

At z1 = −1, we need only compute ϕ(−1), where ϕ(z) = 3z(z−i)
(z−2i)2

. We have

ϕ(−1) = 3(i−1)
(1+2i)2

= Resz=−1f(z).

At the double pole z2 = 2i, we need to compute ϕ′(z), where ϕ(z) = 3z(z−i)
z+1

Resz=2if(z) =
3[(2z − i)(z + i)− z(2− i)]

(z + 1)2

∣∣∣∣
z=2i

=
2

(1 + 2i)2
[3i(1 + 2i) + 2]

Hence
∮
C

(
3z(z−i)

(z−2i)2(z+1)

)
dz = 2πi(Resz=−1 +Resz=2i).

Example 72 : Compute
∮
C

e2z

z(z−iπ)2
, where C is the following contour.

Notice that the circular contour is clockwise, so∮
C
f(z) = 2πi (Resz=iπf(z)− Resz=0f(z))

As for the simple pole z0 = 0,

Resz=0 =
e2z

(z − iπ)2

∣∣∣∣
z=0

= − 1

π2

At the double pole z = iπ,

Resz=iπ =
d

dx

e2z

z

∣∣∣∣
z=iπ

=
2ze2z − e2z

z2

∣∣∣∣
z=iπ

=
1− 2πi

π2
.

By the residual definition we used above,∮
C
f(z) = 2πi (Resz=iπf(z)− Resz=0f(z)) =

2i

π
(2− 2πi) = 4

(
1 +

i

π

)
.
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Example 73 : Let P (z) and Q(z) be polynomials and assume C is a simple closed contour
such that all zeros of Q(z) lie interior to C. If degQ ≥ 2 + degP , prove that∫
C

P (z)
Q(z)dz = 0.

Let m = degP and n = degQ such that degQ ≥ 2 +m and thus write
P (z) =

∑
ajz

j , Q(z) =
∑
bkz

k. Then, by construction,

1

2πi

∮
C

P (z)

Q(z)
dz =

n∑
k=1

Res
z=zk

P (z)

Q(z)
= Res

z=0

P (z−1)

z2Q(z−1)

= Res
z=z0

amz
−m + · · ·+ a1z

−1 + a0
z2bnz−n + · · ·+ b1z−1 + b0

= Res
z=z0

zn(am + am−1z + · · ·+ a0z
m)

zm+2(bn + bn−1z + · · ·b0zn)
= Res

z=0

(
zn−m−2f(z)

)
whence f(z) is analytic at zero. If n ≥ m+ 2, then zn−m−2f(z) is analytic at zero

=⇒ Resz=z0 f(z) = 0 =⇒ P (z)
Q(z)dz = 0.

The following theorem helps us generalize simple poles to functions whose denominator is
not a polynomial:

Theorem 6.8: Poles and Residuals, Part 2

Suppose q(z) has a simple zero at z0. Then, for p(z0) ̸= 0,

Resz=z0

p(z)

q(z)
=
p(z0)

q′(z0)
.

Example 74 : Find the residuals of f(z) = z2+4
sin z .

f(z) has simple poles when z = kπ for k ∈ Z. So,

Resz=kπf(z) =
(kπ)2 + 4

cos(kπ)
= (−1)k(4 + k2π2)

Theorem 6.9: Cauchy’s Argument Principle

Suppose f(z) is analytic except at poles, on and inside a simple close curve C, and
that f(z) has no poles on zeros on C. Then,

1

2πi

∮
C

f ′(z)

f(z)
dz = Z − P

where Z is the number of zeros of f inside C and P is the number of poles of f
inside C.
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Example 75 : Take f(z) = (z−i)2 sin z
(z−5)4

where C is a circle |z| = 6. f has three zeros: two at

z = i, and one at z = 0. f has a pole of order 4 at z = 5. So, by Cauchy’s Argument
Principle,

1

2πi

∮
C

f ′(z)

f(z)
dz = 3− 4 = −1.

This can be verified by integrating f ′(z)
f(z) , namely through logarithmic differentiation.

We leave the following theorem as general results of the different types of singularities:

Theorem 6.10: Removable/Essential Singularities and Poles

Suppose f(z) has an isolated singularity at z0. The following are equivalent:

(1) The singularity is removable.

(2) lim
z→z0

f(z) exists and is finite.

(3) There exists a punctured disk 0 < |z − z0| < δ on which f(z) is bounded.

Suppose z0 is essential and that w ∈ C∪{∞} is given. Then, there exists a sequence
(zn) converging for which limn→∞ f(zn) = w (Casorati-Weierstrass).

z0 is a pole if and only if limz→z0 f(z) = ∞.

Most of these results are (hopefully!) familiar from real analysis, but translated to the
world of complex numbers.
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7 Improper Integrals

Improper integrals are useful in embellishing a lot of the concepts introduced from the
past six sections. We can use the tools we’ve learned about complex analysis to actually
help compute improper integrals with real variables!

Definition 7.1: Cauchy’s Principal Value

Suppose f : R → R is integrable. Provided the limit exists, the Cauchy Principal
Value (CPV) of the improper integral

∫∞
−∞ f(x)dx is the limit

P.V.

∫ ∞

−∞
f(x)dx = lim

R→∞

∫ R

−R
f(x)dx.

WARNING! : We know that if the standard integral converges, it equals its CPV.
However, the converse is not guaranteed to be true!

Example 76 : The function f(x) = x3 is odd and we have that

P.V

∫ ∞

−∞
x3dx = 0 but

∫ ∞

0
x3dx diverges =⇒

∫ ∞

−∞
x3dx diverges.

As a result, we must be careful with odd functions!

We now consider a clever way of computing such improper integrals, mainly stemming
from residue theory:

(1) Suppose f(x) is the restriction to the real line of a complex
function f(z) which is analytic on the upper-half plane (Imz ≥ 0)
except at finitely many poles z1, ..., zn, none of which lie on the
real axis.

(2) Choose R > 0 so that all poles zk lie inside the curve formed by
the real axis and the semi-circle CR with radius R. By Cauchy’s
Residue Theorem, ∫ R

−R
f(x)dx+

∫
CR

f(z)dz = 2πi
n∑

k=1

Res
z=zk

f(z).

(3) If lim
R→∞

∫
CR

f(z)dz = 0, then P.V.

∫ ∞

−∞
f(x)dx = 2πi

n∑
k=1

Res
z=zk

f(z).

We observe that knowledge of poles/residues, ML-inequality, and parametrization of
curves are all imperative in the following problems.
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Example 77 : Evaluate

∫ ∞

−∞

dx

x2 + 1
using Cauchy’s Residue Theorem and Principal Value.

Translating to complex numbers, 1
z2+1

has simple poles z = ±i.
Now, we consider a semi-circle CR = |z| = R > 1 on the upper-
half plane. f(z) is certainly analytic over CR, and the poles of
f are well-contained in CR. We establish an upper bound for∣∣∣∣∮

CR

f(z)dz

∣∣∣∣ using the ML-inequality:

|z2 + 1| ≥
∣∣|z|2 − 1

∣∣ = R2 − 1 =⇒ 1

|z2 + 1|
≤ 1

R2 − 1
=⇒

∣∣∣∣∮
CR

f(z)dz

∣∣∣∣ ≤ Rπ

R2 − 1
−−−−→
R→∞

0.

By verifying the limit, we can now compute the Cauchy Principal Value

P.V.

∫ ∞

−∞

dx

x2 + 1
= 2πiRes

z=i
f(z) =

2πi

2i
= π.

Example 78 : Compute

∫ ∞

−∞

4(x2 − 1)

x4 + 16
dz

First, we note that the simple poles of f(z) are ±2ζ,±2ζ3, where

ζ = e
πi
4 . If we choose CR = |z| = R > 2 on the upper-half plane,

is it obvious to infer that f(z) is analytic on CR and 2ζ, 2ζ3 are
both contained in CR. By Theorem 6.8, let p(z) = 4(z2 − 1) and
q(z) = z4 + 16 such that

Res
z=z0

=
z20 − 1

z30
Using the ML-inequality:

|z4 + 16| ≥
∣∣|z|4 − 16

∣∣ = R4 − 16 =⇒
∣∣∣∣∮

CR

f(z)dz

∣∣∣∣ ≤ 4πR(R2 − 1)

R4 − 16
−−−−→
R→∞

0.

Hence, we can compute the CPV:

P.V.

∫ ∞

−∞
f(x)dx = 2πi

(
Res
z=2ζ

f(z) + Res
z=2ζ3

f(z)

)
= 2πi

(
4ζ2 − 1

8ζ3
+

4ζ6 − 1

8ζ9

)
=

3π

2
√
2
.

While this method works, we run into problems if the simple poles lie on the positive or
negative real axis, as we will see with the next example.
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Example 79 : Compute

∫ ∞

0

dx

x5 + 1
.

There are five simple poles − ζ = e
iπ
5 , ζωk where ω = e

2πi
5 (k =

1, 2, 3, 4) − which are plainly the fifth roots of −1. However, note
that ζω2 = −1, so we can’t let CR be a semi-circle! Now, modify
the semi-circle to a sector whose area is 1

5 of a full circle. That
way, we only deal with one pole. However, we must parametrize
the contour into CR, C2, and C1. Parametrize C2 as z(t) = tω
from 0 ≤ t ≤ R and we find

∫
C2

dz

z5 + 1
=

∫ 0

R

ω

t5 + 1
dt = −ω

∫ R

0

dt

t5 + 1
= −ω

∫
C1

dz

z5 + 1

=⇒ (1− ω)

∫ R

0

dx

x5 + 1
+

∫
CR

dz

z5 + 1
= 2πiRes

z=ζ

1

z5 + 1
=

2πi

5ζ4
=

2πi

5ω2
.

For |z| = R > 1, |z5 + 1| ≥ R5 − 1 =⇒
∣∣∣∣∫

CR

dz

z5 + 1

∣∣∣∣ ≤ 2πR

5(R5 − 1)
−−−−→
R→∞

0.. Therefore,

∫ ∞

0

dx

x5 + 1
=

2πi

5(ω2 − ω3)
=

2πi

5ζω2(ζ−1 − ζ)
=

2πi

5
(
2i sin π

5

) =
π

5
csc
(π
5

)
.

Lemma 7.2: Indented Paths

Let D be the disk |z − z0| ≤ ε and let δ < ϵ, and let Cδ be
the clockwise semi-circle.

1. If ϕ(z) is analytic on D, then lim
δ→0

∫
Cδ

ϕ(z)dz = 0.

2. If f(z) is analytic on D\{z0} with a simple pole at z0,
then

lim
δ→0

∫
Cδ

f(z)dz = −πi Res
z=z0

f(z).

More generally, if Cδ spans θ radians clockwise around z0, then lim
δ→0

∫
Cδ

f(z)dz =

−iθ Res
z=z0

f(z).
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Example 80 : Compute

∫ ∞

0

1 +
√
x

x2 + 1
dx using the indented path 0 < δ < 1 < R, as

pictured below. Assume
√
x is the principal square root.

The simple poles are located at z = ±i. Note that∫ ∞

0

1 +
√
x

x2 + 1
dx =

∫ ∞

0

dx

x2 + 1
+

∫ ∞

0

√
x

x2 + 1
dx

The first integral comes out to π
2 by Example 77. We will need to

apply the indented path to compute the second integral. Apply
the residue theorem to the simple pole z = i.

Res
z=i

f(z) =
e

iπ
4

2i
=

1 + i

2i
√
2

We have that (∫
Cδ

+

∫
C1

+

∫
C2

+

∫
CR

)
f(z)dz = 2πiRes

z=i
f(z) =

1 + i√
2
.

We can control the size of

∫
Cδ

and

∫
CR

and show that their values converge to 0 by the

ML-inequality∣∣∣∣∫
CR

f(z)dz

∣∣∣∣ ≤ πR
√
R

R2 − 1
−−−−→
R→∞

0,

∣∣∣∣∫
Cδ

f(z)dz

∣∣∣∣ ≤ πδ
√
δ

δ2 − 1
−−−−→
δ→0+

0

We will need to establish a relationship between

∫
C1

and

∫
C2

, where C1 is the path from

−R→ −δ, and C2 is the path from δ → R. This can be obtained through

parameterization. If we choose z(t) = −t = teiπ, then z′(t) = −1 and f(z(t)) =
√
−t

(−t)2+1
.

Then,∫
C1

f(z)dz = −
∫
−C1

f(z)dz =

∫ R

δ

√
−t

(−t)2 + 1
dt =

∫ R

δ

i
√
t

t2 + 1
dt = i

∫ R

δ

√
t

t2 + 1
dt = i

∫
C2

f(z)dz

Since
∫
Cδ

and
∫
CR

→ 0, we finally have

(1 + i)

∫ ∞

0

√
x

x2 + 1
dx =

π(1 + i)√
2

=⇒
∫ ∞

0

√
x

x2 + 1
dx =

π√
2
.

Lastly, ∫ ∞

0

1 +
√
x

x2 + 1
dx = π

(
1

2
+

1√
2

)
.
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8 More Examples

We cover 20 more examples that span Sections 1 - 7.

Example 81 : Find every root of (−8− 8i
√
3)

1
4 and exhibit them as vertices of a certain

square, and point out which is the principal root.

Recall that z = |z|eiθ. Hence,

(−8− 8i
√
3)

1
4 =

(
16e

4πi
3

) 1
4
= 2e

πi
3 = 1 + i

√
3

This is the principal root. To compute the other k = 3 roots, we add kπ
2 to π

3 for
k = 1, 2, 3. The remaining fourth roots are

z
1
4 = 2e

5πi
6 = −

√
3 + i, 2e

4πi
3 = −1− i

√
3, 2e

11π
6 =

√
3 + i.

As vertices of a square, they are ±(
√
3− i),±(1 + i

√
3).

Example 82 : Prove that lim
z→∞

4z2

(z − 1)2
= 4 using the ε− δ definition.

Proof : Let t = 1
z , then lim

t→0

4

t2
(
1
t2
− 2

t + 1
) = lim

t→0

4

(t− 1)2
. By the limit definition, let

ε > 0, δ > 0 be given such that∣∣∣∣ 4

(t− 1)2
− 4

∣∣∣∣ = ∣∣∣∣ 2t− t2

(t− 1)2

∣∣∣∣ < |t||t− 2|
|t− 1|

< ε for some |t| < δ.

Fix δ = 1
2 . Then −1

2 < t < 1
2 and,

|t||t− 2|
|t− 1|

= 5δ < ε =⇒ δ =
ε

5
.

Hence, choose δ such that

δ = min

{
ε

5
,
1

2

}
.

Example 83 : Determine where f ′(z) exists and find its value when f(z) = zImz.

Apply the Cauchy Riemann equations. Let f(z) = f(x, y) = (x+ iy)y = xy + iy2.
ux = y = 2y = vy when y = 0. uy = x = 0 = −vx when x = 0. Hence the point
(x, y) = 0 =⇒ z = 0 is the only point that satisfies the C-R equations. Because all partial
derivatives are continuous, we say that f(z) is differentiable at z = 0 with

f ′(0) = ux + ivx
∣∣
(x,y)=(0,0)

= 0.
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Example 84 : Use polar coordinates to show that f(z) = 1
z4

is differentiable everywhere
except for when z ̸= 0 and then find f ′(z).

Verifying the Cauchy-Riemann equations in polar coordinates is a simple result of the
multivariable chain rule:

Aside 8.1: Cauchy-Riemann Requirements in Polar Form

If we let z = x + iy, we have the criteria ux = vy, uy = −vx. In polar form, we let
z = reiθ and differentiate u and v with respect to r and θ. The multivariable chain
rule gives us

∂u

∂r
=
∂u

∂x

∂x

∂r
+
∂u

∂y

∂y

∂r
,
∂u

∂θ
=
∂u

∂x

∂x

∂θ
+
∂u

∂y

∂y

∂θ

If we assume that the partial derivatives of u and v with respect to x and y also
satisfy the Cauchy-Riemann equations, then

rur = vθ, uθ = −rvr.

For the points z0 that satisfy the criteria above,

f ′(z0) = e−iθ(ur + ivr)
∣∣∣
(r0,θ0)

.

Using the aside, we say f(z) = 1
r4
e−4iθ = cos(4θ)

r4
− sin(4θ)

r4
i. Now we compute the partial

derivatives:

rur = −4 cos(4θ)

r4
= vθ, uθ = −4 sin(4θ)

r4
= −rvr

Hence the equations are satisfied everywhere except for when r = 0 because the partial
derivatives are continuous for r ̸= 0, as expected. So, we compute f ′(z0) accordingly

f ′(z0) = e−iθ0

(
−4 cos(4θ0)

r50
+

4 sin(4θ0)

r50

)
= e−iθ0

(
− 4

r50
e−4iθ0

)
= − 4

r50
e−5iθ0 = − 4

z50
.

where z0 ∈ C\{0}.
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Example 85 : Find the principal value of
[
e
2(−1− i

√
3)
]3πi

.

Let f(z) =
[
e
2(−1− i

√
3)
]z
, where

f(z) =
(
e · e−

2πi
3

)2
= e

zLog
(
e·e−

2πi
3

)
= ez(1−

2πi
3 ) =⇒ f(3πi) = e3πi(1−

2πi
3 ) = e3πie2π

2
= −e2π2

.

Example 86 : Compute sin−1(−i).

Rewrite this as

sin z = −i⇐⇒ eiz − e−iz

2i
= −i⇐⇒ eiz − e−iz = 2.

Fix u = eiz. Then we will obtain a quadratic in eiz

u2−2u−1 = 0 ⇐⇒ u =
2±

√
8

2
= 1±

√
2 ⇐⇒ eiz = 1±

√
2 ⇐⇒ z = −i ln

(
1±

√
2
)
+2πn

where n ∈ Z.

Example 87 : By integrating the Taylor series for z−1 about z0 = 1, prove that

Logz =

∞∑
n=1

(−1)n+1

n
(z − 1)n whenever |z − 1| < 1.

We have that f (n)(1) = (−1)nn!, so the Taylor series for 1
z is

1

z
=

∞∑
n=0

(−1)nn!(z − 1)n

(n+ 1)!
=⇒

∫
dz

z
=

∞∑
n=0

∫
(−1)n

n
(z − 1)ndz =

∞∑
n=0

(−1)n

(n+ 1)
(z − 1)n+1

=

∞∑
n=1

(−1)n+1

n
(z − 1)n+1 = Logz.

For Examples 88-90, let f(z) = 1−2i
(z−1)(z−2i) =

1
z−1 − 1

z−2i .

Example 88 : Find a Laurent series centered at z0 for f(z) on D1 = {z : 0 < |z| < 1}.
Then, compute

∮
C f(z)dz where C is a simple closed curve in the given domain encircling

the origin.

We expand each series as a Maclaurin series

f(z) = − 1

1− z
+

1

2i− z
= − 1

1− z
+

1

2i
(
1− z

2i

) =
∞∑
n=0

[
(−1)n+1 + (2i)−(n+1)

]
zn.

f(z) is analytic =⇒ a−1 = 0 =⇒
∮
C f(z)dz = 0.
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Example 89 : Follow the same instructions as the previous example, except on the region
D2 = {1 < |z| < 2}

The second series from the previous example remains the same. However, we must
manipulate the first series accordingly:

1

z − 1
+

1

2i− z
=

1

z

(
1

1− 1
z

)
+

1

2i− z
=

∞∑
n=1

1

zn
+

∞∑
n=1

(2i)−nzn+1

By residue theory,
∮
C f(z)dz = 2πia−1 = 2πi.

Example 90 : Follow the same instructions as the past two examples, except on the region
D3 = {z : |z| > 2}

The first series from the previous example remains the same. We manipulate the second
series the same way we did in the previous example.

1

z − 1
− 1

z − 2i
=

1

z − 1
− 1

z

(
1

1− 2i
z

)
=

∞∑
n=1

1

zn
−

∞∑
n=1

(2i)n−1

zn
=

∞∑
n=1

1− (2i)n−1

zn
.

The z−1 term vanishes, and so
∮
C f(z)dz = 0.

Compute the residue or residues for Examples 91 - 92.

Example 91 : f(z) = sin(2z)
(z−i)3

.

Let ϕ(z) = sin(2z). Then,

Res
z=i

f(z) = ϕ′′(i) = −4 sin(2i) = −4

(
ei

2 − e−i2

2i

)
= 2i(e−1 − e).

Example 92 : f(z) = z
(z−2)2(z+i)

We compute two residues: one at the simple pole z = −i and the double pole z = 2.

Res
z=−i

f(z) = − i

(−i− 2)2
= − i

3− 4i
= −3i+ 4

25
.

Res
z=2

= f ′(2) =
(z + i)− z

(z + i)2

∣∣∣∣
z=2

=
i

(2 + i)2
=

4 + 3i

25
.
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For the remaining exercises, compute each integral using any of the following
methods: Parameterization, Cauchy-Goursat, Cauchy’s Integral Formula,
Laurent Series, Residue Theorem.

Example 93 : Compute
∫
C(z + z2)dz where C is the line from 1 + 3i to the origin.

Parameterization is not required for z2, so we can directly compute the integral∫ 0

1+3i
z2dz = −1

3
(1 + 3i)3 = −1

3
(1 + 9i− 27− 27i) =

26

3
+ 6i.

For the complex function z we must parameterize the line. Let z(t) = (t− 1)(1 + 3i).
Then, z′(t) = (1 + 3i)t and f(z(t)) = t(1− 3i)− (1− 3i) and we hence compute the
integral ∫

C
zdz =

∫ 1

0
(1 + 3i)(t(1− 3i)− (1− 3i))dt =

∫ 1

0
(10t− 10)dt = −5.

Combining both integrals gives ∫
C
(z + z2)dz =

11

3
+ 6i.

Example 94 : Let C be the square with vertices ±2(1 + i),±2(−1 + i). Evaluate∮
C

z2+i
(z−3)4

dz.

The singularity z = 3 lies outside C. By Cauchy-Goursat,
∮
C

z2+i
(z−3)4

dz = 0.

Example 95 : Let C1 be the unit circle oriented counterclockwise and C2 be a circle of
radius 3 centered at the origin also oriented counterclockwise. Show∮
C1

√
z

z− 1
4

dz =
∮
C2

√
z

z− 1
4

dz and then compute the integral.

C1 and C2 are both positively oriented and non-intersecting, and the singularity z = 1
2

lies interior to both contours. By Theorem 4.7, the two integrals are equal. Now, we use
Cauchy’s Integral Formula∮

C1

√
z

z − 1
4

dz =

∮
C2

√
z

z − 1
4

dz = 2πi

√
1

4
= πi.
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Example 96 : Compute
∮
C

z3+sin(iz)
(z−π)4

dz where C is the circle |z| = 4.

Use Cauchy’s Integral Formula. Let f(z) = z3 + sin(iz). Then,∮
C

z3 + cos(iz)

(z − π)4
dz =

2πi

3!
f ′′′(π) = 2πi

(
1− cos(iπ)

6

)
= πi

(
2− 1

6
(eπ − e−π)

)
Example 97 : Compute

∮
C

ez
2

z7
dz where C is the unit circle oriented counterclockwise.

The easiest way to compute this is through deriving the Laurent Series and find 2πia−1.

ez
2

z7
=

∞∑
n=0

z2n

z7n!
=

∞∑
n=0

z2n−7

n!
a−1 =

1

24
=⇒

∮
C

ez
2

z7
dz =

iπ

12
.

Example 98 : Compute
∮
C

3z3+2
(z−1)(z2+9)

dz where C is the circle |z| = 4.

We need to compute three residues, at z = 1, z = ±3i

Res
z=1

f(z) =
3z2 + 2

z2 + 9

∣∣∣∣
z=1

=
1

2
.

Res
z=3i

f(z) =
3z2 + 2

z − 1

∣∣∣∣
z=3i

=
3(3i)3 + 2

(3i− 1)(6i)
=

−81i+ 2

−18− 6i
=

1

60
(243i− 6 + 2i+ 81) =

15 + 49i

12

Similar computation yields

Res
z=−3i

f(z) =
15− 49i

12
.

Therefore, summing up the residues and multiplying by 2πi:∮
C

3z3 + 2

(z − 1)(z2 + 9)
dz = 2πi

(
Res
z=1

f(z) + Res
z=3i

f(z) + Res
z=−3i

f(z)

)
= 6πi.

Example 99 : Suppose that C is the rectangle whose sides are the lines x = ±2, y = 0, and
y = 1. Compute

∮
C

dz
(z2−1)2+3

.

Solve the quartic function in the denominator:

z4 − 2z + 4 −−−→
u=z2

u2 − 2u+ 4 = 0 ⇐⇒ u = 1± i
√
3 = 2e±

iπ
3 ⇐⇒ z = ±

√
2e±

iπ
6 .

The roots w =
√
2e

πi
6 ,−w = −

√
2e

−πi
6 lie in C, so we compute the residues evaluated at

those points. Since these are simple poles, we can simply evaluate at the derivative of the
denominator:

Res
z=w

=
1

4w(w2 − 1)
=

1

4wi
√
3

Res
z=−w

=
1

4w
√
3i
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Here we used the fact that z2 − 1− i
√
3 = 0 =⇒ z2 − 1 = i

√
3 as provided from the

function. Therefore,∮
C
f(z)dz =

2πi

4i
√
3

(
1

w
+

1

w

)
=

π

2
√
6

(
e−

πi
6 + e

πi
6

)
=

π√
6
cos
(π
6

)
=
π
√
2

4
.

Example 100 : Compute
∫∞
0

x2

(x2+9)(x2+4)2
dx.

Let C be a semi-circle on the upper-half plane such that C = |z| = R > 3, Imz ≥ 0. Then,
for R > 3, ∣∣∣∣∫

CR

f(z)dz

∣∣∣∣ ≤ πR ·R2

(R2 − 9)(R2 − 4)
−−−−→
R→∞

0.

Therefore, we conclude that∫ ∞

0
f(x)dx = 2πi

(
Res
z=3i

f(z) + Res
z=2i

f(z)

)
.

f(z) has a simple pole at z = 3i. So,

Res
z=3i

f(z) =
z2

(z + 3i)(z2 + 4)2

∣∣∣∣
z=3i

=
−9

(6i)(−9 + 4)2
=

3i

50

We use logarithmic differentiation to compute the residue at the double pole z = 2i:

Res
z=2i

f(z)dz =
d

dz

z2

(z2 + 9)(z + 2i)2

∣∣∣∣
z=2i

Let w = f(z). Then,

lnw = 2 ln z − ln
(
z2 + 9

)
− 2 ln(z + 2i) =⇒ dw

dz

1

w
=

2

z
− 2z

z2 + 9
− 2

z + 2i

=⇒ dw

dz
= w

(
2

z
− 2z

z2 + 9
− 2

z + 2i

)
=

[
z2

(z2 + 9)(z + 2i)2

](
2

z
− 2z

z2 + 9
− 2

z + 2i

)
Evaluated at z = 2i gives − 13i

200 . Therefore, the improper integral∫ ∞

0

x2

(x2 + 9)(x2 + 4)2
dx = 2πi

(
3i

50
− 13i

200

)
=

π

200
.
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9 References

The notes (and visuals!) were taken and heavily influenced by Complex Variables and
Applications: 8th edition by Brown and Churchill as well as Neil Donaldson’s notes which
can be found at https://www.math.uci.edu/~ndonalds/!
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