Math 140B Main Concepts: Ryan Gomberg

1 Continuity

Pointwise Continuity

We first start with the definition of real-valued function and domain/image. Given a function $f(x): x \to \mathbb{R}$,

We call the domain of a real-valued function $Dom(f) = \mathbb{N}$. In general, the domain is Dom(f) = (a, b), [a, b], (a, b], [a, b)

The image, or range, is $\text{Im}(f) = f(I) = \{f(I) : x \in I\}.$

This definition helps us introduce the concept of pointwise continuity, as shown below.

Definition 1.1: Pointwise Continuity

We say f is **pointwise continuous** at $x = x_0 \in \text{Dom}(f)$ provided that for each $\epsilon > 0, \exists \delta > 0$ such that $|f(x) - f(x_0)| < \epsilon$ for all $x \in \text{Dom}(f)$ with $|x - x_0| < \delta$.

The idea is that δ depends on ϵ , so we want to find such δ as a function of ϵ .

Example 1: Show that $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & x \neq 0\\ 0, & x = 0 \end{cases}$ is pointwise continuous at $x_0 = 0$.

The first thing we notice is that $\left|\sin\left(\frac{1}{x}\right)\right| \leq 1 \quad \forall x$, so we get

$$|f(x) - f(0)| = \left|x^2 \sin\left(\frac{1}{x}\right) - 0\right| \le x^2$$

In addition we have that $|x - x_0| = |x| < \delta$. So, if we square |x| then we get $|x|^2$ which we know is $< \epsilon$. Hence, let $\delta = \sqrt{\epsilon}$. We thus obtain

$$|f(x) - f(0)| \le |x|^2 < \delta^2 = \epsilon.$$

This completes the proof.

Example 2: Show that $f(x) = x^2$ is pointwise continuous at $x_0 = a$ for $a \in \mathbb{R}$.

Let $\delta > 0, \epsilon > 0$ be given. We want to show that $|x - a| < \delta \Longrightarrow |x^2 - a^2| < \epsilon$. To achieve this, we rewrite $|x^2 - a^2| = |x - a||x + a|$. Without loss of generality, let |x - a| < 1. This implies |x + a| = |x - a + 2a| < 1 + 2|a|. So, we have that

$$|x - a||x + a| < |x - a|(1 + 2|a|) = \delta \cdot (1 + 2|a|) = \epsilon.$$

We have two choices for $\delta : 1$ or $\frac{\epsilon}{1+2|a|}$. We want to choose whichever is smaller. So

$$\delta = \min\left\{1, \frac{\epsilon}{1+2|a|}\right\}$$

Theorem 1.2: Sequential Definition of Continuity

We say f is **pointwise continuous** at $x = x_0 \in \text{Dom}(f)$ if and only if for each sequence $\{x_n\} \subset \text{Dom}(f)$ converging to x_0 , $\lim f(x_n) = f(x_0)$.

Example 3: Show that $f(x) = \begin{cases} \frac{1}{x} \sin\left(\frac{1}{x^2}\right), & x \neq 0\\ 0, & x = 0 \end{cases}$ is discontinuous at x = 0.

Idea: We want to find a sequence x_n such that $x_n \to 0$ but $f(x_n)$ diverges. For simplicity, let us find such x_n for which $\sin\left(\frac{1}{x_n^2}\right) = 1$. For $x_n = \frac{1}{2\pi n + \frac{\pi}{2}}$, we have that $x_n \to 0$ but $\lim \frac{1}{x_n} \to \infty$. Therefore we have a discontinuity.

Theorem 1.3: Operations on Continuous Functions

Let f, g be continuous at x_0 and $c \in \mathbb{R}$ be some constant. We have that (1) |f| is continuous at x_0 . (2) cf is continuous at x_0 . (3) f + g is continuous at x_0 . (4) $\frac{f}{g}$ is continuous at x_0 provided that $g(x_0) \neq 0$. (5) f(g(x)), g(f(x)) are both continuous at x_0 .

Properties of Continuous Functions

We look at two main properties of continuous functions

Theorem 1.4: Extreme Value Theorem

Let f be a continuous function on [a, b]. We have that f satisfies two properties. (1) f is bounded.

(2) f attains its maximum/minimum on [a, b] i.e. $\exists x_0, y_0 \in [a, b]$ such that $f(x_0) \leq f(x) \leq f(y_0)$.

The proof for this theorem stems from the Bolzano-Weierstrauss theorem and the properties of bounded sequences. For oscillating functions like $\sin x$, $\cos x$, we often have to show that we can find unique, converging subsequences because the main sequences diverge by oscillation.

Example 4: Show that sin(x) attains a maximum/minimum on $[0, 4\pi]$.

We obviously know that sin(x) is continuous. Let x_n be a sequence such that

$$x_n = \begin{cases} \frac{\pi}{2} + \frac{1}{n}, & n = 2k - 1\\ \frac{5\pi}{2} + \frac{1}{n}, & n = 2k \end{cases}$$

Therefore we have that $x_n \to \frac{\pi}{2}, \frac{5\pi}{2}$ as $n \to \infty$ and $\lim f(x_n) = 1$. We have that $\sin(x) \le 1$ for all $x \in [0, 4\pi]$. A similar case for the minimum can be applied for $x = \frac{3\pi}{2}, \frac{7\pi}{2}$.

Suppose f is continuous on an interval (a, b), then there exists a $c \in (a, b)$ such that for f(a) < y < f(b), f(c) = y.

An incredibly useful result from the IVT is that we can use this to show the existence of roots of continuous functions. In fact, we can translate a lot of problems into root problems. Let the following example demonstrate this.

Example 5: Let f, g be two continuous functions on [a, b] such that $f(a) \ge g(a)$ and $f(b) \le g(b)$. Prove $f(x_0) = g(x_0)$ for at least one $x_0 \in [a, b]$.

Idea: Let us define a new function h(x) = f(x) - g(x). At $h(a), f(a) \ge g(a)$ implies h(a) > 0, and h(b) < 0 by the same logic. Therefore, the IVT guarantees that $\exists x_0 \in [a, b]$ such that $h(x_0) = 0$. This implies $f(x_0) - g(x_0) = 0$ and $f(x_0) = g(x_0)$ for at least x_0 , as desired.

Example 6: Suppose f is continuous on [0,2] and f(0) = f(2). Prove there exist $x, y \in [0,2]$ such that |y-x| = 1 and f(x) = f(y). Let g(x) = f(x+1), f(x). We know a is continuous because f(x+1) is continued.

Let g(x) = f(x+1) - f(x). We know g is continuous because f(x+1) is continuous on [-1,1] and f(x) is continuous on [0,2]. Computing g(0) and g(1) yields g(0) = f(1) - f(0) > 0 and g(1) = f(2) - f(1) = f(0) - f(1) < 0. Therefore we have g(0) = -g(1). If g(0) = 0 then we are done. Otherwise, we see that g(0) and g(1) are of opposite signs. Therefore by IVT, there exists a $c \in (0,1)$ such that g(c) = 0. Then $f(c+1) - f(c) = 0 \Longrightarrow f(c+1) = f(c)$. If we let y = c+1 and x = c then the condition is satisfied.

Definition 1.6: Contractive Map

Let X be a set in \mathbb{R} . $f: X \to X$ is said to be a contractive map if there exists a $c \in (0,1)$ such that |f(x) - f(y)| < c|x - y|

Definition 1.7: Banach Fixed Point Theorem

Let X be a closed set in \mathbb{R} and $f: X \to X$ be a contractive map. Then, f has a unique fixed point in X.

Example 7: Determine whether $f(x) = \ln(1+x) : (0,\infty) \to (0,\infty)$ is a contractive map. We apply the definition of a contractive map to f. For $x, y \in (0,\infty)$, we have

$$|\ln(1+x) - \ln(1-y)| = \left|\ln\left(\frac{1+x}{1-y}\right)\right|$$

By the Mean Value Theorem for derivatives, for some $z \in (x, y)$, there exists a c such that

$$|f(x) - f(y)| = \frac{1}{z+1}|x-y|$$

However, if we let y approach 0^+ , then $\frac{1}{z+1} \to 1$, but we require it to be strictly less than 1. Therefore, we reach a contradiction.

Uniform Continuity

Definition 1.8: Uniform Continuity

Let a function f and interval I be given. We say f is **uniformly continuous** in I if for each $\epsilon > 0, \exists \delta > 0$ such that $|f(x) - f(y)| < \epsilon$ for all $x, y \in I$ with $|x - y| < \delta$. *Remark*: Recall that for pointwise continuity, δ is dependent on the point x_0 and ϵ . For uniform continuity, δ is not dependent on x, y, only ϵ !

Example 8: Show $f(x) = \frac{1}{x^2}$ is uniformly continuous on $[1, \infty)$.

Let $\epsilon > 0, \delta > 0$ be given. We want to find δ such that

$$\left|\frac{1}{x^2} - \frac{1}{y^2}\right| < \epsilon$$

We have that

$$\left|\frac{1}{x^2} - \frac{1}{y^2}\right| = \left|\frac{y^2 - x^2}{x^2 y^2}\right| = \left|\frac{x + y}{x^2 y^2}\right| |x - y| = \left|\frac{1}{x^2 y} + \frac{1}{x y^2}\right| |x - y|$$

And so

$$\left|\frac{1}{x^2y} + \frac{1}{xy^2}\right| |x - y| \le 2|x - y| < \epsilon = 2\delta$$

Setting $\delta = \frac{\epsilon}{2}$ completes the proof.

Example 9: Show that $f(x) = \sin\left(\frac{2}{x}\right)$ is not uniformly continuous on (0, 1). Let $\epsilon = 2$. Then, we aim to find a $\delta > 0$ such that $|f(x) - f(y)| = \left|\sin\left(\frac{2}{x}\right) - \sin\left(\frac{2}{y}\right)\right| \ge 2$. For $x = \frac{4}{\pi + 4\pi k}, y = \frac{4}{3\pi + 4\pi k}, k \in \mathbb{Z}$, we have $\left|\sin\left(\frac{2}{x}\right) - \sin\left(\frac{2}{y}\right)\right| = |1 - (-1)| = 2 \ge \epsilon$ where $|x - y| < \delta$ given $0 < x, y < \delta$. Therefore, f(x) is not uniformly continuous on (0, 1).

Theorem 1.9: Continuity implies Uniform Continuity on a Closed Interval

If f is continuous on [a, b], then f is uniformly continuous on [a, b].

Note that the converse is generally not true. Uniform continuity is a tighter case than continuity.

Example 10: Show that $f(x) = x^3$ is uniformly continuous on [0, 1], but not uniformly continuous on \mathbb{R} .

(1) As for the first case, we simply apply the above Theorem. f(x) is clearly continuous on [0, 1], so its uniform continuity comes for free.

(2) The second case isn't as obvious. We need to use the sequential definition of continuity, so let $(x_n), (y_n)$ be two sequences such that $(x_n), (y_n) \to 0$. This time, we want to show $|f(x_n) - f(y_n)| \ge \epsilon$ for some $\epsilon > 0$ Let $x_n = n + \frac{1}{n}, y_n = n$. So $|f(x_n - f(y_n)| = |(n + \frac{1}{n}) - n^3| = 3n$. We know that $3n \ge 3$ for all $n \in \mathbb{N}$, so choosing $\epsilon = 3$ completes the proof.

Theorem 1.10: Uniform Continuity and Cauchy Sequences

If f is uniformly continuous on I and $\{s_n\}$ is a sequence in I, then $f(\{s_n\})$ is Cauchy.

Example 11: Show that $f(x) = \frac{1}{x^2}$ is not uniformly continuous on (0, 1).

Here we let $s_n = \frac{1}{n}$, and so $f(s_n) = n^2$. Because s_n is a convergent sequence, it is also Cauchy. However, $f(s_n)$ is not Cauchy, so clearly f(x) is not uniformly continuous on (0, 1).

Theorem 1.11: Uniform Continuity and Differentiation

A function f(x) is uniformly continuous on I if $|f'(x)| \leq M$ for some $M < \infty$.

Example 12: Show $f(x) = \sin(2x+1) + \sqrt[3]{x}$ is uniformly continuous on \mathbb{R} . First, we can apply the fact that the sum of two uniformly continuous functions is also uniformly continuous. So let us show (1) $g(x) = \sin(2x+1)$ and (2) $h(x) = \sqrt[3]{x}$ are uniformly continuous functions on \mathbb{R} (1) Intuitively, $|g'(x)| = |2\cos(2x+1)| \le 2$ for all $x \in \mathbb{R}$. Because the derivative is bounded, clearly $\sin(2x+1)$ is uniformly continuous on \mathbb{R} .

(2) We need to be more careful with h(x). In particular, we can investigate different intervals. First, look at [-1, 1]. It is obvious that h is continuous on this interval, so h is also uniformly continuous. Everywhere else, we show that h'(x) is bounded. We have $|h'(x)| = \left|\frac{1}{3x^{\frac{2}{3}}}\right| \leq \frac{1}{3}$ for all $x \in (-\infty, -1] \cup [1, \infty)$, so h(x) is uniformly continuous everywhere.

Because g and h are both uniformly continuous on \mathbb{R} , we have shown f(x) is also uniformly continuous on \mathbb{R} .

2 Limits of Functions

Definition 2.1: $\epsilon - \delta$ Definition of Limits

We say that f has limit L when $x \to a$ if for any $\epsilon > 0$, there is a $\delta > 0$ such that for all $x \in (a - \delta, a + \delta) \cap X, x \neq a$, we have

$$|f(x) - L| < \epsilon \Longrightarrow \lim_{x \to \infty} f(x) = L$$

Remark: X is a subset on \mathbb{R} .

The format for proving limits is practically the same for continuity. We aim to find a $\delta > 0$ that $|x - a| < \delta$. This is commonly done by manipulating the function or finding bounds, as we will see in the following examples.

Example 13: Prove that $\lim_{x\to 4} x^3 = 64$.

Let $\epsilon > 0$ be given. We want to find a $\delta > 0$ such that $|x^3 - 64| < \epsilon$ for such $|x - 4| < \delta$. Here we know $|x^3 - 64| = |(x - 4)(x^2 + 4x + 16)|$. We know that x^3 is strictly increasing so $|(x - 4)(x^2 + 4x + 16)| < |(x - 4)(5^2 + 4(5) + 16)| = 61|(x - 4)|$. Therefore, let $\delta = \min\{1, \frac{\epsilon}{61}\}$. If $0 < |x - 4| < \delta$, then $|x^3 - 64| < \epsilon$.

Example 14: Prove that $\lim_{x\to 1} \frac{x-1}{\sqrt{x-1}} = 2$. Let $\epsilon > 0$ be given. We want to find a $\delta > 0$ such that $\left|\frac{x-1}{\sqrt{x-1}} - 2\right| = \left|\frac{x-1-2\sqrt{x}+2}{\sqrt{x-1}}\right| = \left|\frac{x-2\sqrt{x}+1}{\sqrt{x-1}}\right| = \left|\frac{(\sqrt{x}-1)^2}{\sqrt{x-1}}\right| = |\sqrt{x}-1| < \epsilon$. For $|x-1| < \delta$, we know $|\sqrt{x}-1| < \sqrt{\delta}$. Therefore, let $\delta = \epsilon^2$. If $0 < |x-1| < \delta$, then $\left|\frac{x-1}{\sqrt{x-1}} - 2\right| < \epsilon$.

Example 15: Prove that $\lim_{x\to 2} e^x = e^2$ For any $\epsilon > 0$, we want to find a $\delta > 0$ such that if $0 < |x-2| < \delta$ then $|e^x - e^2| < \epsilon$. We have

$$|e^{x} - e^{2}| = e^{2}|e^{x-2} - 1| = e^{2}\left|\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{n!} - 1\right| \le e^{2}\sum_{n=1}^{\infty} \frac{1}{n!}|x-2| \le e^{3}|x-2| < \epsilon^{3}|x-2| < \epsilon^{3$$

Therefore setting $\delta = \min\{e^{-3}\epsilon, 1\}$ gives us $|e^x - e^2| < \epsilon$ if $|x - 2| < \delta$.

3 Power Series

Definition 3.1: Power Series and Radius of Convergence

A power series about x = 0 is written as

$$\sum_{n=0}^{\infty} a_n x^n$$

The **radius of convergence** of a power series is the interval in which the series converges, denoted by R. Let $R = \frac{1}{L}$ where

$$L = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}}$$

Remark: R and L can be similarly computed with the Ratio Test and yields the same answer.

Example 16: Determine where $\sum \frac{2^n}{n} x^{3n}$ converges. First we compute L

$$L = \limsup_{n \to \infty} \sqrt[3n]{\frac{2^n}{n}}$$

Each term is getting smaller and smaller, so the largest term, when n = 1, is the lim sup.

$$L = \pm \sqrt[3]{2} \Longrightarrow R = \pm \frac{1}{\sqrt[3]{2}}$$

Now we check to see whether the endpoints converge. For both $x = -\frac{1}{\sqrt[3]{2}}, \frac{1}{\sqrt[3]{2}}$, we get the same series:

$$\sum 2^n \left(\pm \frac{1}{\sqrt[3]{2}} \right)^{3n} = \sum (\pm 1)^{3n}$$

which diverges. Therefore,

$$\sum \frac{2^n}{n} x^{3n} \text{ converges for } x \in \left(-\frac{1}{\sqrt[3]{2}}, \frac{1}{\sqrt[3]{2}}\right)$$

Example 17: Determine where $\sum \frac{3^n}{n^2} x^{n!}$ converges. This time, we will make use of the ratio test

$$L = \limsup_{n \to \infty} \left| \frac{3^{n+1} x^{(n+1)!}}{(n+1)^2} \right| \left| \frac{n^2}{3^n x^{n!}} \right| = \left| \frac{3x^{(n+1)!-n!} n^2}{(n+1)^2} \right|$$

For |x| < 1, the limit approaches zero. Otherwise, it diverges (or cannot be defined if x = 1). So, R = 1.

If we plug in $x = \pm 1$, 3^n grows faster than n^2 so it will diverge at both endpoints. Therefore the series converges for $x \in (-1, 1)$. *Example 18*: Determine where $\sum 2^n x^{n^2}$ converges.

$$L = \limsup_{n \to \infty} \left| \frac{2^{n+1} x^{(n+1)^2}}{2^n x^{n^2}} \right| = \limsup_{n \to \infty} \left| 2x^{2n+1} \right|$$

Applying the same argument from Example 17, R = 1. If we check the endpoints, the geometric series diverges. Therefore the series converges for $x \in (-1, 1)$.

Example 19: Find the largest set in \mathbb{R} such that $\sum \frac{(-1)^n}{3^n} x^{5n+1}$ converges.

$$L = \limsup_{n \to \infty} \left| \frac{x^{5(n+1)+1} 3^n}{x^{5n+1} 3^{n+1}} \right| = \lim_{n \to \infty} \left| \frac{x^5}{3} \right| < 1 \Longleftrightarrow |x| < \frac{1}{\sqrt[5]{3}}$$

Plugging in the endpoints yields two geometric series that both converge.

Therefore,
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3^n} x^{5n+1} \text{ converges for } x \in \left[-\frac{1}{\sqrt[5]{3}}, \frac{1}{\sqrt[5]{3}}\right]$$

Definition 3.2: Explicit Formulas for Power Series

Assume the power series $f(x) = \sum a_n x^n$ converges on $(-R, R) \subseteq \mathbb{R}$. Then f(x) is differentiable and integrable on (-R, R)

(1)
$$\frac{d}{dx} \left(\sum_{n=0}^{\infty} a_n x^n \right) = \sum_{n=1}^{\infty} n a_n x^{n-1}$$
 for $|x| < R$
(2) $\int_0^x \sum_{n=0}^{\infty} a_n x^n dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ for $|x| < R$
(3) $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$
(4) $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$
(5) $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$

Example 20: Find the explicit expression of $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$ for $x \in (-1, 1)$. First we find f'(x)

$$f'(x) = \sum_{n=1}^{\infty} -\frac{(-1)^n}{n} n x^{n-1} = -\sum_{n=1}^{\infty} (-x)^{n-1} = -\sum_{n=1}^{\infty} (-x)^n = -\frac{1}{1+x}$$

Now we can integrate

$$\int_0^x f'(t)dt = -[\ln(1+t)]_0^x = -\ln(1+x) = f(x)$$

Example 21: Find the explicit expression of $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$ for $x \in (-1,1)$.

$$f'(x) = \sum_{n=1}^{\infty} (-1)^n x^{2n} = \sum (-x^2)^n = \frac{1}{1+x^2}$$

Integrating f'(x) yields

$$\int_0^x f'(t)dt = \int_0^x \frac{dt}{1+t^2} = \tan^{-1}(x) = f(x)$$

Example 22: Find the explicit expression of $\sum_{n=1}^{\infty} (-1)^n nx^n$ for $x \in (-1, 1)$.

$$\sum_{n=1}^{\infty} (-1)^n n x^n = -x \left(\sum (-x)^n \right)' = -x \left(\frac{1}{1+x} \right)' = \frac{x}{(1+x)^2} = f(x)$$

4 Sequences of Functions and Convergence

Definition 4.1: Pointwise and Uniform Convergence

Let ${f_n(x)}_{n=1}^{\infty}$ be a sequence of functions on X.

We say that $f_n \to f$ **pointwisely** on X if $\lim_{n\to\infty} f_n(x) = f(x)$ for every given $x \in X$.

We say that $f_n \to f$ uniformly if $\sup\{|f_n(x) - f(x)| : x \in X\} \to 0$ as $n \to \infty$.

Remark: If f_n does not converge pointwisely, then it will not converge uniformly. Think of uniform convergence as a stronger case compared to pointwise convergence.

Example 23: Let $f_n(x) = x^n$. Determine if $f_n(x)$ converges uniformly on (0, 1). First we prove that $f_n(x)$ converges pointwisely. For any $x \in (-1, 1)$, we know $|x|^n \to 0$ as $n \to \infty$. Since $-|x|^n \le x^n \le |x|^n$, by the Squeeze Theorem, $\lim f_n(x) = 0$. Now to show x^n converges uniformly to 0, we find

$$\sup\{|x^n - 0| : x \in (-1, 1)\} = \sup\{x^n : x \in [0, 1)\} = 1 \to 0 \text{ as } n \to \infty$$

Therefore, $f_n(x)$ does not converge uniformly to 0 on (0, 1).

Example 24: Determine if $f_n(x) = \frac{nx}{1+n^2x}$ converges uniformly on \mathbb{R} Let us find the limit function $f(x) = \lim f_n(x)$.

$$\lim_{n \to \infty} \frac{nx}{1 + n^2 x} = \lim_{n \to \infty} \frac{\frac{nx}{n^2}}{\frac{1}{n^2} + \frac{n^2 x}{n^2}} = 0$$

Now, we check for uniform convergence

$$\sup\left\{\frac{n|x|}{1+n^2|x|^2}|: x \in \mathbb{R}\right\} \sim \sup\left\{\frac{t}{1+t^2}: t \in \mathbb{R}\right\} = \frac{1}{2} \nrightarrow 0 \text{ as } t \to \infty$$

Therefore, $f_n(x)$ does not converge uniformly on \mathbb{R} .

Remark: This also could have been proved by finding the critical point x_0 as a function of n of $f_n(x)$ and showing $f_n(x_0) \to 0$. In this case, we get a contradiction because f'(x) = 0 when n = 0, which is never possible. So, f_n does not converge uniformly.

Theorem 4.2: Uniform Convergence and Continuity

If $\{f_n\}$ is a sequence of continuous functions on I and $f_n(x) \to f(x)$ as $n \to \infty$ uniformly on I then f is continuous on I. Example 25: Let $f_n(x) = (1 - |x|)^n$ on [-1, 1] and let f(x) = 1 if $x \neq 0$ and f(0) = 0. Determine whether $f_n(x) \to f(x)$ uniformly on [-1, 1] as $n \to \infty$.

Here we have $f_n(x)$ is continuous for all n on [-1, 1], but f(x) contains a discontinuity at x = 0. By the above theorem, $f_n \nleftrightarrow f$ uniformly on [-1, 1]. This could have also been solved using the definition of sup.

Theorem 4.3: Weierstrass M-Test

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions on I such that

 $|f_n(x)| \le M_n, x \in I$

If $\sum_{n=1}^{\infty} M_n < \infty$, then $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly and absolutely on *I*.

Example 26: Show that $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^3x}$ converges uniformly on $(0, \infty)$. A useful fact that we will first prove is that $|\sin(nx)| \le n|x|$. By the Mean Value Theorem, $\exists c \in (0, x)$ such that

$$\frac{\sin(nx) - \sin(0)}{x - 0} \bigg| = \bigg| \frac{\sin(nx)}{x} \bigg| = |n\cos(nx)| \Longleftrightarrow \sin(nx) \le n|x|$$

Now we use this fact to say

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^3 x} \le \frac{1}{n^2}$$

Let $M_n = \frac{1}{n^2}$. By *p*-series test, $\sum M_n$ converges to a finite number. Therefore, by the M-test, $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^3x}$ converges uniformly on $(0, \infty)$.

Example 27: Show that $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2x}$ does not converge uniformly on $(0, \infty)$. Let us write the finite sum $\sum_{k=n+1}^{2n} \frac{\sin(kx)}{k^2x}$ where $x = \frac{\pi}{4n}$ and $kx = \frac{k\pi}{4n}$. We know that $\frac{\pi}{4}kx \leq \frac{\pi}{2}$ for all k, n. So, $\sin(kx) \geq \frac{\sqrt{2}}{2}$. Lastly, we compute $k^2x = k(kx) \leq (2n)\left(2n + \frac{\pi}{4n}\right) = n\pi$. Therefore,

$$\sum_{k=n+1}^{2n} \frac{\sin(kx)}{k^2 x} \ge \sum_{k=n+1}^{2n} \frac{\frac{\sqrt{2}}{2}}{n\pi} \ge \frac{\sqrt{2}}{2\pi} = \epsilon_0 > 0$$

If we take $\epsilon_0 = \frac{\sqrt{2}}{2\pi}$ for any $n \in \mathbb{N}$, $x_n = \frac{\pi}{4n}$, we have

$$\left|\sum_{k=n+1}^{2n} \frac{\sin(kx)}{k^2 x}\right| \ge \epsilon_0$$

So, by Cauchy Criterion, the series does not converge uniformly on $(0, \infty)$.

Example 28: Show that if $\sum |a_k| < \infty$, then $\sum a_k x^k$ converges uniformly on [-1, 1] to a continuous function.

Because $x \in [-1, 1]$, $|a_k x^k| \le |a_k|$. We know that $|a_k|$ converges and each partial sum is continuous because it is a polynomial. Therefore, by the *M*-test, $\sum |a_k|$ converges.

5 Weierstrass Approximations

Theorem 5.1: Weierstrass Approximation Theorem

Let $f \in C[0,1]$. Then, there are a sequence of polynomials $\{p_n\}_{n=1}^{\infty}$ such that $B_n f(x) \to f(x)$ uniformly as $n \to \infty$.

Example 29: Show that there does not exist a sequence of polynomials $\{p_n\}_{n=1}^{\infty}$ such that $p_n(x) \to \cos x$ as $n \to \infty$ uniformly on \mathbb{R} .

Suppose by contradiction there did exist such $\{p_n\}_{n=1}^{\infty}$. Then, there exists a polynomial such that

$$|p(x) - \cos x| < \frac{1}{2} = \epsilon$$
 for all $x \in \mathbb{R}$

If p(x) is a constant polynomial, we see an immediate contradiction because $\cos x$ is an oscillatory function and takes on multiple values, and so a constant function cannot converge to an oscillatory one. Now, say that p is not a constant polynomial. If p converges, then it must be bounded. So, we have

$$|p(x)| = |p(x) - \cos x| + |\cos x| < \frac{3}{2}$$

but $\lim_{x\to\infty} |p(x)| = \infty$, contradiction.

Example 30: Find a sequence of polynomials $\{p_n(x)\}_{n=1}^{\infty}$ converging to $\cos x$ uniformly on [0, 2].

Let $f_0(x) = \cos(2x)$ on [0, 1]. We know that $f_0(x)$ is continuous on [0, 1], therefore we can find a Bernstein polynomial $B_n(f_0(x))$ such that $B_n(f_0(x)) \to \cos(2x)$ uniformly. Let $g(x) = \frac{x}{2}$ on [0, 2]. Continuity is given for free because it is a polynomial, so we can find a Bernstein polynomial such that $B_n(g(x)) = B_n\left(\frac{x}{2}\right)$ converges uniformly to $\cos\left(2\left(\frac{x}{2}\right)\right) = \cos(2x)$ on [0, 2].

6 Differentiation

Definition 6.1: Differentiation

Let f(x) be a function on $(a, b), x_0 \in (a, b)$. We say that f(x) is differentiable at x_0 if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 exists

denoted by f'(x).

Example 31: Let $f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & x \neq 0\\ 0, & x = 0 \end{cases}$. Find all $x_0 \in \mathbb{R}$ such that f is differentiable

at x_0 .

If $x_0 \neq 0$, then $\frac{1}{x}$ is differentiable at x_0 and so $\sin\left(\frac{1}{x}\right)$ is differentiable at x_0 . Otherwise, for $x_0 = 0$, observe that

$$f'(x_0) = \lim_{x \to 0} \frac{x \sin\left(\frac{1}{x}\right) - 0}{x} = \sin\left(\frac{1}{x}\right)$$

and the limit does not exist, so f is differentiable for all $x \in \mathbb{R}$ except x = 0.

Example 32: Construct a function f on \mathbb{R} that is continuous on \mathbb{R} but nowhere differentiable on \mathbb{R} .

Let $f_0(x) = |x|, x \in [-1, 1]$ and $f(x) = \sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^n f_0(4^n x)$. By the *M*-test, it is continuous.

Example 33: Let $f(x) = x^2$ for x rational and f(x) = 0 for x irrational.

(a) Prove f is continuous at x = 0.

(b) Prove f is differentiable at x = 0.

(a) Let $\epsilon > 0$ and fix $\delta = \sqrt{\epsilon}$. Then, $|f(x) - f(0)| = |f(x)| \le x^2$ for which $|x| < \delta \Longrightarrow |x|^2 \le \delta^2 = (\sqrt{\epsilon})^2 = \epsilon$. (b) $\lim_{x \to 0} \left| \frac{f(x) - f(0)}{x - 0} \right| = \left| \frac{f(x)}{x} \right| \le \frac{x^2}{|x|} = |x| = 0$. So, f'(0) = 0 exists.

Example 34: Give an example that shows that if f_n is integrable on [a, b] and $f_n \to f$ pointwisely on [a, b] and f is integrable on [a, b], then $\lim_{n\to\infty} \int_a^b f_n(x) dx \neq \int_a^b f(x) dx$.

Let
$$f_n(x) = \begin{cases} nx^{n-1}, & x \in [0,1) \\ 0, & x = 1 \end{cases}$$

Theorem 6.2: Rolle's Theorem

Let f(x) be continuous on [a, b] and differentiable on (a, b) and f(a) = f(b). Then, there exists a $c \in (a, b)$ such that f'(c) = 0.

Example 35: Let f and g be differentiable on an open interval I. Suppose a, b satisfy a < b and f(a) = f(b) = 0. Show f'(x) + f(x)g'(x) = 0 for some $x \in (a, b)$.

Let $h(x) = f(x)e^{g(x)}$. Then, we have that h(a) = h(b) = 0 and $h'(x) = e^{g(x)}(f'(x) + f(x)g'(x))$. By Rolle's Theorem, there exists a $x \in (a, b)$ such that h'(x) = 0. We know that $e^{g(x)} > 0$ always, so we must have f'(x) + f(x)g'(x) = 0.

Theorem 6.3: Mean Value Theorem (MVT)

Let f(x) be continuous on [a, b] and differentiable on (a, b). Then, there exists a $c \in (a, b)$ such that

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

Remark: Rolle's Theorem is a corollary of the MVT

Example 36: Show that $|\cos x - \cos y| \le |x - y|$ for all x, y.

Let $f(x) = \cos x$ on [x, y]. Since f is continuous on [x, y] and differentiable on (x, y), we have that by the MVT, there exists a $c \in [x, y]$ such that

$$\left|\frac{\cos(x) - \cos(y)}{x - y}\right| = \left|-\sin(c)\right|$$

Because $|\sin c| \le 1$, $|\cos x - \cos y| \le |x - y|$ as desired.

Example 37: Let f be defined on \mathbb{R} and suppose $|f(x) - f(y)| \le (x - y)^2$ for all $x, y \in \mathbb{R}$. Prove f is a constant function.

We have that $\frac{|f(x)-f(y)|}{|x-y|} \leq |x-y|$ and $\lim_{x\to y} \frac{|f(x)-f(y)|}{|x-y|} \leq \lim_{x\to y} |x-y| \Longrightarrow \lim_{x\to y} \frac{|f(x)-f(y)|}{|x-y|} \leq 0$. By MVT, this implies $|f'(y)| \leq 0$ and so f'(y) = 0, implying that f is constant.

Example 38: Show $ex \leq e^x$ for all $x \in \mathbb{R}$.

Let $g'(x) = e^x - e$ for all $x \in \mathbb{R}$. Then, we have that $g'(x) \leq 0$ for $x \leq 1$ and $g'(x) \geq 0$ for $x \geq 1$. Therefore, g has a local min at x = 1. We find $g(x) = e^x - ex$ and g(1) = 0. So, $g(x) \geq 0$ for all $x \in \mathbb{R} \Longrightarrow e^x \geq ex$.

Example 39: Let $f(x) = x^2 \sin\left(\frac{1}{x}\right) + \frac{x}{2}$ for $x \neq 0$ and f(0) = 0. Show f is not increasing for on any open interval containing 0.

We show that for any open interval containing x_0 , $\exists x_0$ such that $f'(x_0) \ge 0$. We have that

$$f'(x) = \left(-\frac{1}{x^2}\right)x^2\cos\left(\frac{1}{x}\right) + 2x\sin\left(\frac{1}{x}\right) + \frac{1}{2} = \frac{1}{2} + 2x\sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$$

Let $x_n = \frac{1}{2\pi n}$ for $n \in \mathbb{N}$. Then, $f'(x_n) = -\frac{1}{2}$ and any open interval containing 0 also contains x_n . Therefore, f cannot be increasing.

Theorem 6.4: L'Hopital's Rule

Let $f(x) = \frac{g(x)}{h(x)}$ and suppose $\lim_{x \to a}$ yields an indeterminate form. Then,

$$\lim_{x \to a} f(x) = \lim_{x \to a} \frac{g'(x)}{h'(x)} = \dots = \lim_{x \to a} \frac{g^{(n)}(x)}{h^{(n)}(x)}$$

Example 40: Find $\lim_{x\to\infty} \left(1-\frac{1}{x}\right)^x$.

Let $L = \lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^x$. Then, $\ln(L) = \lim_{x \to \infty} x \ln\left(1 - \frac{1}{x}\right)$. We have that $x = \frac{1}{\frac{1}{x}}$, so we rewrite it as

$$\lim_{x \to \infty} \frac{\ln\left(1 - \frac{1}{x}\right)}{\frac{1}{x}}$$

This is an indeterminate form $\frac{0}{0}$, so we can apply L'Hopital's Rule.

$$\lim_{x \to \infty} \frac{\frac{1}{x^2} \cdot \frac{1}{1 - \frac{1}{x}}}{-\frac{1}{x^2}} = \lim_{x \to \infty} -\frac{1}{1 - \frac{1}{x}} = -1 = \ln(L) \Longrightarrow L = e^{-1}$$

Example 41: Show $\lim_{x\to 0^+} \frac{1+\cos x}{e^x-1} = +\infty$

Let $(x_n) \in (0, \infty)$ such that $x_n = \frac{1}{e^{x_n} - 1}$. Then $x_n > 0$ and $x_n \to 0$ and $1 + \cos(x_n) \to 2$ and $\lim_{x \to 0^+} \frac{2}{\operatorname{small} +} = +\infty$.

Example 42: Find $\lim_{x\to\infty} x^{\sin\left(\frac{1}{x}\right)}$ $\ln L = \lim_{x\to\infty} \sin\left(\frac{1}{x}\right) \ln x = -\lim_{x\to\infty} \sin\frac{1}{x} \ln \frac{1}{x}$. Let $t = \frac{1}{x}$. Then, $t \to 0^+$. So we have

$$\lim_{t \to 0^+} \sin t \ln t = \lim_{t \to 0^+} \frac{\frac{\sin t}{t}}{\ln t} t = \lim_{t \to 0^+} \frac{t}{\ln t}$$

By L'Hopital's Rule, this gives

$$\lim_{t \to 0^+} t = 0 \Longrightarrow \frac{1}{x} \to \infty \Longrightarrow e^{\infty} = \infty$$

Example 43: Use L'Hopital's Rule to show that if f is twice differentiable in (a, b),

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x)$$

Apply L'Hopital's Rule with respect to h.

$$\lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h} \Longrightarrow \lim_{h \to 0} \frac{f''(x+h) + f''(x-h)}{2} = \lim_{h \to 0} \frac{2f''(x)}{2} = f''(x).$$

Example 44: Repeat Example 43 with the assumption that $f \in C^2([a, b])$. Again, apply L'Hopital's Rule

$$\lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h} = \lim_{h \to 0} \frac{f'(x+h) - f'(x) + f'(x) - f'(x-h)}{2h}$$
$$= \frac{1}{2}f''(x) + \frac{1}{2}f''(x) = f''(x)$$

A similar argument can be made using the Mean Value Theorem.

Theorem 6.5: Taylor's Theorem

Let $f \in C^n([a, b])$. Then for any $x_0, x \in (a, b)$,

$$f(x) = \sum_{j=0}^{n-1} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j + \frac{f^{(n)}(x_0)}{(n)!} (x - x_0)^n$$

The last term is the remainder, or Lagrange error bound of the approximation. So, $f(x) = p_n(x) + R_n(x)$.

Example 45: Prove that $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$. Let $f(x) = \cos x$. Then, for $n \ge 0, k \in \mathbb{Z}^+$

$$f^{(n)}(x) = \begin{cases} -\sin x & n = 4k+1 \\ -\cos x & n = 4k+2 \\ \sin x & n = 4k+3 \\ \cos x & n = 4k \end{cases} \Longrightarrow f^{(n)}(0) = \begin{cases} (-1)^{\frac{n}{2}} & n \text{ even} \\ 0 & n \text{ odd} \end{cases}$$

So, the Taylor Series for $\cos x = P_n(x) = \sum_{n=0}^{\infty} \frac{(-1)^{\frac{n}{2}}}{n!} x^n = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$. Now, we prove the convergence of $P_n(x) \to \cos(x)$. Let $x \in \mathbb{R}$. Then, $\exists y \in (0, x)$ such that $|R_n(x)| = \left| \frac{f^{(n)}(y)}{n!} x^n \right| \le \left| \frac{x^n}{n!} \right| \to 0$ as $n \to \infty$. Therefore, the Taylor Series for $\cos x$ converges for all \mathbb{R} .

2

2

Example 46: Prove the convergence of $p_n(x) := \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} \to \sinh x$ for all $x \in \mathbb{R}$. Let $y \in (0, x)$ be defined such that

$$R_n(x) = \left| \frac{f^{(n)}(y)}{n!} x^n \right|$$

We have that $|f^{(n)}(y)| = \left|\frac{e^{y} \pm e^{-y}}{2}\right| \le \left|\frac{e^{M} + e^{M}}{2}\right| = e^{M}$. So,

$$R_n(x) \le \left|\frac{e^M}{n!}x^n\right| \to 0$$

Therefore, we have convergence.

Example 47: Prove $(1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} \frac{\alpha \cdots (\alpha - n + 1)}{n!} x^n$.

Observe $f'(x) = \alpha(1+x)$ and $f^{(k)}(x) = \alpha(\alpha-1)\cdots(\alpha-k+1)(1+x)^{\alpha-k}$ and $f^{(k)}(0) = \alpha(\alpha-1)\cdots(\alpha-k+1)$. Therefore,

$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{\infty} \frac{\alpha \cdots (\alpha - k + 1)}{k!} x^k.$$

Convergence follows a similar argument to Examples 45-46.

Example 48: Let f(x) be twice differentiable on [-3, 2] such that f(0) = 0 and f(2) = f(-1) = 2. Prove there is $x_0 \in (-1, 2)$ such that $f''(x_0) \ge 2$. We have by Taylor's Theorem

$$f(2) = f(0) + f'(0)(2 - 0) + \frac{(2 - 0)^2}{2!}f''(\xi_1) = f(0) + 2f'(0) + 2f''(\xi_1) = f(-1) = f(0) + f'(0)(-1 - 0) + \frac{(-1)^2}{2!}f''(\xi_2) = f(0) - f'(0) + \frac{1}{2}f''(\xi_2) = f(0) - f(0) + \frac{1}{2}f''(\xi_2) = f(0) - \frac{1}{2}f'''(\xi_2) = f(0) - \frac{1}{2}f''''(\xi_2) = f(0) - \frac{1}{2}f''''(\xi_2) = f(0) - \frac{1$$

We do not know the value of f'(0) is so that is what we want to eliminate. We get

$$2f''(\xi_1) + f''(\xi_2) = 6$$

Therefore $f''(\xi_1) \ge 2$ or $f''(\xi_2) \ge 2$.

Definition 6.6: Real Analytic Functions

Let f(x) be a function on I = (a, b). We say that f is real analytic on I if for any $x_0 \in I$, there is a $\delta > 0$ such that

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

for $|x - x_0| < \delta$.

Example 49: Prove if f is a real analytic on (a, b) then $f \in C^{\infty}((a, b))$.

Let f(x) be a real analytic function, then we know it converges to the power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$. We find that for a higher order derivative $f^{(k)}(x)$,

$$f^{(k)}(x) = \sum_{n=k}^{\infty} a_n \frac{n!}{(n-k)!} (x-x_0)^{n-k} = \sum_{j=0}^{\infty} a_j (x-x_0)^j \text{ for } j = n-k$$

can be differentiated term-by-term, which converges uniformly for any infinitesimally small subinterval $(-\delta, \delta)$ of (a, b) by the definition of R-A functions.

Example 50: Give an example of a C^{∞} function that is not real analytic.

Let $f(x) = \begin{cases} e^{\frac{1}{x}} & x < 0\\ 0 & x \ge 0 \end{cases}$. *f* is real analytic for x < 0, but not at $x_0 = 0$. Suppose by contradiction that *f* is real analytic at $x_0 = 0$, then

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n \quad x \in (-\delta, \delta) \text{ for some } \delta > 0$$
$$f(x) = \sum_{n=0}^{\infty} = 0 \quad x \in (-\delta, \delta)$$

Let $f(x) = e^{\frac{1}{x}}$. We reach a contradiction at $(-\delta, 0)$.

Definition 6.7: Convex Functions

Let f be a continuous function on [a, b]. We say that f is convex on [a, b] if for any x < y < b and $t \in (0, 1)$, one has

$$f(tx + (1 - t)y)) \le tf(x) + (1 - t)f(y)$$

Example 51: Let f and g be twice differentiable on (a, b). If g is convex increasing and f is convex on (a, b), then show that $(g \circ f)$ is convex on (a, b).

Fix $0 \le t \le 1, x, y \in (a, b)$. Then because f is convex and g increasing,

$$(g \circ f)(tx + (1-t)y) = g(f(tx - (1-t)y) \le g(tf(x) + (1-t)f(y)) \le t(g \circ f)(x) + (1-t)(g \circ f)(y) \le f(x) + (1-t)(y) = f(x) + (1-t)(y) = f(x) + (1-t)(y) = f(x) + (1-t)(y) = f(x$$

which is convex by definition.

Example 52: Let f be twice differentiable and $f''(x) \ge 0$ on (a, b). Then, prove (a) If $x_0 \in (a, b)$ is a critical point of f, then $f(x) \ge f(x_0), x \in (a, b)$.

We have that by the Mean Value Theorem for
$$x > x_0, x_1 \in (x_0, x)$$
,
 $f(x) - f(x_0) = f'(x_1)(x - x_0) = f'(x_1)(x - x_0) - f'(x_0)(x - x_0) = (f'(x_1) - f'(x_0))(x - x_0) = f''(x_2)(x_1 - x_0)(x - x_2)$ for $x_2 \in (x_0, x_1)$.

(b) For any $x_1, x_2 \in (a, b)$, one has $f\left(\frac{x_1+x_2}{2}\right) \le \frac{f(x_1)+f(x_2)}{2}$

By the definition of convex functions (6.7), we get $f\left(\frac{x_1+x_2}{2}\right)$ if $t = \frac{1}{2}$. Following the definition completes the proof.

(c) For any $x_0 \in (a, b)$, one has $f(x) \ge f(x_0) + f'(x_0)(x - x_0)$

By the Mean Value Theorem, $\exists c \in (x_0, x)$ such that

$$\frac{f(x) - f(x_0)}{x - x_0} \le f'(c)$$

Because $f''(x) \ge 0$, then f' is increasing and so $f'(x_0) \le f'(c)$. Therefore,

$$\frac{f(x) - f(x_0)}{x - x_0} \ge f'(x_0) \Longrightarrow f(x) \ge f(x_0) + f'(x_0)(x - x_0)$$

Example 53: Let p, q > 1 satisfy $\frac{1}{p} + \frac{1}{q} = 1$. Then, prove $xy \le \frac{x^p}{p} + \frac{y^q}{q}$ for any x, y > 0.

Let $f(x) = -\ln x$. Note that f''(x) > 0 for $(0, \infty)$ so it is a convex function. Thus, for any $1 < p, q < \infty$ satisfying $\frac{1}{p} + \frac{1}{q} = 1$, we use definition 6.7

$$f\left(\frac{x^p}{p} + \frac{y^q}{q}\right) \le \frac{1}{p}f(x^p) + \frac{1}{q}f(y^q) \Longleftrightarrow xy \le \frac{x^p}{p} + \frac{y^q}{q}$$

Example 54: If x_1, x_2, \dots, x_n are positive numbers then prove $\sqrt[n]{x_1x_2\cdots x_n} \leq \frac{x_1+x_2+\dots+x_n}{n}$. Let $f(x) = -\ln(x)$, which is convex on $(0, \infty)$. Then the above inequality holds if and

only if

$$-\ln(\sqrt[n]{x_1x_2\cdots x_n}) \le -\frac{1}{n}\ln(x_1+x_2+\cdots+x_n).$$

The case in which n = 2 is clear. Suppose it holds for n; we will prove this also holds for n + 1

$$-\ln\left(\frac{x_1 + \dots + x_n + x_{n+1}}{n+1}\right) = -\ln\left(\frac{n}{n+1}\frac{x_1 + \dots + x_n}{n} + \frac{x_{n+1}}{n+1}\right).$$

By definition of convexity, this is less than

$$\frac{n}{n+1}\left(-\ln\left(\frac{x_1+\dots+x_n}{n}\right)\right) + \frac{1}{n+1}(-\ln x_{n+1}) = \frac{1}{n+1}(-\ln x_1 - \ln x_2 - \dots \ln x_{n+1})$$

By mathematical induction, the statement holds for all $n \in \mathbb{N}$.

7 Integration

Definition 7.1: Upper and Lower Darboux Sums

Given a partition P of [a, b] and a bounded function f on [a, b], define

$$M_{i} = \sup_{x \in [x_{i-1}, x_{i}]} f(x) \quad U(f; P) = \sum_{i=1}^{n} M_{i}(x_{i} - x_{i-1})$$

$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x) \quad L(f; P) = \sum_{i=1}^n m_i (x_i - x_{i-1})$$

as the lower and upper Darboux sums for f.

Theorem 7.2: Riemann Test for Integrability

Let f be a bounded function on [a, b]. Then f is integrable on [a, b] if and only if for any $\epsilon > 0$, there exists a partition $P : a < x_0 < x_1 < \cdots < x_n = b$ such that

$$U(f;P) - L(f;P) < \epsilon$$

Example 55: Give an example of a function f on [0, 1] which is not integrable on [0, 1].

Let D(x) be the Dirichlet function given by $D(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{Q}^c \end{cases}$. Let $P = 0 = x_0 < x_1 < \dots < x_n = 1$ be a partition of [0, 1]. Then, we find that $M_i = \sup_{x \in [x_{i-1}, x_i]} D(x) = 1$ and $m_i = \inf_{x \in [x_{i-1}, x_i]} D(x) = 0$. Then, $U(D; P) = 1 \neq L(D; P) = 0$. Therefore, D(x) is not integrable on [0, 1].

Example 56: Prove that any monotone functions are integrable on [a, b].

Without loss of generality, suppose f is increasing on [a, b]. For any $\epsilon > 0$, choose N such that $\frac{(b-a)}{N}(f(b) - f(a)) < \epsilon$. Let $x_j = a + \frac{j}{N}(b-a)$ and P be the partition of [a, b]. Then, $M_j(f) = \sup_{x \in [x_{j-1}, x_j]} f(x) \le f(x_j)$ and $m_j(f) = \inf_{x \in [x_{j-1}, x_j]} f(x) \ge f(x_j)$. Then,

$$U(f;P) - L(f;P) = \sum_{j=1}^{N} (M_j - m_j)(x_j - x_{j-1}) \le \sum_{j=1}^{N} (f(x_j) - f(x_{j-1}))(x_j - x_{j-1})$$

Substitute $x_j - x_{j-1} = \frac{b-a}{N}$

$$=\sum_{j=1}^{N} (f(x_j) - f(x_{j-1}))\frac{b-a}{N} = \frac{b-a}{N} (f(x_N) - f(x_0)) = \frac{b-a}{N} (f(b) - f(a)) < \epsilon$$

So, f is integrable on [a, b].

Example 57: If f and g are integrable as improper integrals on (a, b) where f and g may not be bounded on (a, b). Provide examples of f and g such that f and g are not integrable on (a, b).

$$f = x^{\frac{1}{3}}, g = x^{\frac{2}{3}}$$
 on $(0, 1)$.

Example 58: Construct a function on $[0, \infty)$ such that f is not integrable on [0, b] for any b > 0, f^2 is continuous on $[0, \infty)$, and $\int_0^\infty |f(x)| dx$ converges.

Define $f_0(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ -1 & x \in \mathbb{Q}^c \end{cases}$ and $f(x) = f_0(x)e^{-x}$. We show that f is not integrable on [0, b] for b > 0. Let P be a partition of [a, b]. Then,

$$U(f;P) - L(f;P) = \sum_{j=1}^{n} (M_j(f) - m_j(f))(x_j - x_{j-1}) = \sum_{j=1}^{n} (e^{-x_{j-1}} + e^{-x_{j-1}})(x_j - x_{j-1})$$
$$\ge 2e^{-b} \sum_{j=1}^{n} (x_j - x_{j-1}) = 2e^{-b}b > 0$$

Therefore, f is not integrable on [a, b].

Example 59: Suppose f and g are integrable on [a, b], then prove fg is also integrable on [a, b].

The proof is quite a bit involved. The idea is to show f^2 is integrable first. If f is integrable, then it is bounded, say by B. Let $S \subseteq [a, b]$ such that for $x, y \in S$,

$$f^{2}(x) - f^{2}(y) = |(f(x) + f(y))(f(x) - f(y))| \le 2B|f(x) - f(y)| \le 2B(M(f;S) - m(f;S))$$
$$\implies M(f^{2};S) - m(f^{2};S) \le 2B(M(f;S) - m(f;S))$$

Now, fix P as a partition of [a, b]. Then we see that the above inequality holds for any $S = [t_{k-1}, t_k]$. So, the difference of the upper and lower Darboux sums are

$$U(f^{2}; P) - L(f^{2}; P) = \sum_{k=1}^{n} M_{k}(f^{2})(t_{k} - t_{k-1}) - \sum_{k=1}^{n} m_{k}(f^{2})(t_{k} - t_{k-1}) \le 2B \sum_{k=1}^{n} (t_{k} - t_{k-1})(M_{k}(f) - m_{k}(f))$$
$$= 2B(U(f; P) - L(f; P))$$

Let $\epsilon > 0$ be given such that

$$U(f;P) - L(f;P) < \frac{\epsilon}{2B} \Longrightarrow U(f^2;P) - L(f^2;P) < \frac{\epsilon}{2B}(2B) = \epsilon$$

Therefore, f^2 is integrable. Now, note that for integrable functions f, g,

 $4fg = (f+g)^2 - (f-g)^2$. The sum and scalar multiple of integrable functions are also integrable. This implies $(f+g)^2 - (f-g)^2$ are also integrable. Therefore, fg is integrable on [a, b].

Theorem 7.3: Mean Value Theorem for Integrals

Let f(x) be continuous on [a, b], g(x) be integrable on [a, b] and $g(x) \ge 0$ on [a, b]. Then, $\exists x_0 \in [a, b]$ such that

$$f(x_0) \int_a^b g(x) dx = \int_a^b f(x)g(x) dx$$

Remark: If we let g(x) = 1, then this becomes

$$f(x_0) = \frac{1}{b-a} \int_a^b f(x) dx$$

Example 60: Prove $\exists x_0 \in (0,3)$ such that $\int_0^3 (x^2 + 2) \sin(x^2 + 1) dx = 15 \sin(x_0^2 + 1)$. Let $f(x) = \sin(x^2 + 1), g(x) = x^2 + 2$. Then, by the MVT for integrals, $\exists x_0 \in (0,3)$ such that

$$\sin(x_0^2+1)\int_0^3 (x^2+2)dx = 15\sin(x_0^2+1) = \int_0^3 (x^2+2)\sin(x^2+1)dx$$

Riemann-Stieltjes Integral

Example 61: Evaluate $\int_{-2}^{2} x^2 dF$ if

$$F(x) = \begin{cases} -1 & -2 < x \le -1 \\ x+1 & -1 < x \le 0 \\ x^2+1 & 0 < x \le 1 \\ x^3+2 & x > 1 \end{cases}$$

Let $f(x) = x^2$. Then

$$\begin{split} \int_{-2}^{2} f(x)dF &= \int_{-2}^{-1} fdF + f(-1)[F(-1^{+}) - F(-1^{-})] + \int_{-1}^{0} fdF + f(0)[F(0^{+}) - F(0^{-})] \\ &+ \int_{0}^{1} fdF + f(1)[F(1^{+}) - F(1^{-})] + \int_{1}^{2} fdF = \frac{643}{30} \end{split}$$

Example 62: Show that $\int_0^\infty \frac{\sin x}{x} dx$ converges.

First, show that $\lim_{x\to 0} \frac{\sin x}{x} = 0$. Then, show $\int_1^\infty \frac{\sin x}{x}$ converges. You will need to do integration by parts you will get $\int_1^\infty \frac{\cos x}{x^2}$ which converges.

Example 63: Show that $\int_0^\infty \frac{\sin^2 x}{x(\ln(2+x))^p} dx$ converges for p > 1. First show that $\lim_{x\to 0} \frac{\sin^2 x}{x(\ln(2+x))^p}$ exists. Then, compare to $\int_0^\infty \frac{1}{x(\ln(2+x))^p} dx$