
1 FOURIER ANALYSIS IN ONE VARIABLE

Math 112B Notes: Ryan Gomberg

1 Fourier Analysis in One Variable

Parseval’s Identity

1

π

∫ π

−π
(f(x))2dx =

a20
2

+

∞∑
N=1

(a2n + b2n)

Generalized Parseval’s Identity
Let f(x), f∗(x) ∈ L2([−π, π)). Then,

1

π

∫ π

−π
f(x)f∗(x)dx =

a0a
∗
0

2
+

∞∑
N=1

(ana
∗
n + bnb

∗
n)

Error Bound
The error for a Fourier Series approximating f(x) can be computed by

|f(x)− sN (x)| =

(
1

π

∫ π

−π
(f ′(x))2dx−

N∑
n=1

n2(a2n + b2n)

) 1
2
(
π2

6
−

N∑
n=1

1

n2

) 1
2

...where sN (x) is the partial sum of the Fourier Series for f .

Pointwise Convergence of Fourier Series
(1) If

∫ π
−π |

F (x0+τ)−F (x0)
τ |dτ is finite, then we have pointwise convergence at x0

(Dini’s Test)
(2) Suppose f is bounded, has finite extrema, and has finite discontinuities. Then,

the series converges to x0 at
f(x−

0 )+f(x+
0 )

2 (Dirichlet’s Theorem)

Uniform Convergence of Fourier Series Let f(x) be a continuous 2π-periodic
function that satisfies the below conditions:

(1) f ′(x) is continuous, except for a finite amount of points
(2)

∫ π
−π(f

′(x))2dx is finite

(3) f(x)− f(−π) =
∫ x
−π f

′(t)dt for all x
...then the Fourier Series of f converges uniformly to f(x).
To show convergence for all x, prove that this holds for f(x− 2πm)

Convergence in the Mean
Uniform convergence implies convergence in the mean. f(x) ∈ L2([−π, π)) means f
converges in the l2 norm.
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1 FOURIER ANALYSIS IN ONE VARIABLE

Formal definition: A sequence of functions {fk(x)}k≥1 defined over a ≤ x ≤ b is said to
converge in the mean to g(x) if

lim
k→∞

∫ b

a
(fk(x)− g(x))2dx = 0

Completeness
We say a set of orthogonal functions is complete if the Fourier Series based off the set of
functions converges in the mean.

Change of Scale
Let f(x) be a function defined on a ≤ x < b. We can apply a change of scale such that
our new domain x satisfies −π < x < π. So, let

x = 2π

(
x− 1

2(a+ b)

b− a

)
=⇒ x =

b− a

2π
x+

1

2
(a+ b)

Thus, F (x) has the Fourier Series

F (x) ∼ a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx))

=
a0
2

+
∞∑
n=1

(
an cos

(
2nπ

(
x− 1

2(a+ b)

b− a

))
+ bn sin

(
2nπ

(
x− 1

2(a+ b)

b− a

)))
The sine and cosine series is as such

a0 =
2

b− a

∫ b

a
f(x)dx

an =
2

b− a

∫ b

a
f(x) cos

(
πn

b− a
(x− a)

)
dx

bn =
2

b− a

∫ b

a
f(x) sin

(
πn

b− a
(x− a)

)
dx

Example: Let f(x) = ex, 1 ≤ x < 2.
x = 2π

(
x− 1

2(1 + 2)
)
= π(2x− 3)

So, its Fourier Series is

f(x) ∼ a0
2

+

∞∑
n=1

(an cos(nπ(2x− 3)) + bn sin(nπ(2x− 3)))
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1 FOURIER ANALYSIS IN ONE VARIABLE

The sine and cosine series is as such

a0 = 2

∫ 2

1
exdx = 2(e2 − e)

an = 2

∫ 2

1
f(x) cos(πn(x− 1))dx

bn = 2

∫ 2

1
f(x) sin(πn(x− 1))dx

Pointwise Convergence Example: Let f(x) = ex, 1 ≤ x < 2.
We have that f(x) is bounded from e ≤ x < e2 and contains finitely many extrema and

discontinuities within (1, 2). So, ∀x, the Fourier Series for f converges to f(x−)+f(x+)
2 .

Uniform Convergence Example: f(x) = ex, 1 ≤ x < 2

First, we show that
∫ b
a (f

′(x))2dx < ∞.∫ 2

1
e2xdx =

1

2
(e4 − e2) < ∞

Next, f(x)− f(1) =
∫ x
1 (e

t)
′
dt. Both sides are equivalent to (ex − e)

Now, consider an extension of f with periodicity = (b− a)m = 1m, where m ∈ N. Then,

f(x) = ex+m = f(1) +

∫ x+m

1
etdt = f(1) +

∫ x

−m
et−mdt

= f(1) +

∫ 2

1
etdt+

∫ 3

2
et−1dt+

∫ 4

3
et−2dt+ ...+

∫ m

0
etdt

= e+ (e2 − e) + (e2 − e) + (e2 − e) + ...+ (e2 − e) = e+m(e2 − e) ̸=
∫ x

−m
et−mdt

.
Therefore, f does not converge uniformly.

Convergence in the Mean Example: Let f(x) = ex, 1 ≤ x < 2.

We show
∫ b
a (f(x))

2dx < ∞ ∫ 2

1
e2xdx =

1

2
(e4 − e2) < ∞

We have shown that f converges in the mean.
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2 HOMOGENEOUS PDES IN TWO VARIABLES

2 Homogeneous PDEs in Two Variables

Laplace’s Equation in a Rectangle
We consider the setup

∂2u
∂x2 + ∂2u

∂y2
= 0 0 < x < π, 0 < y < A

u(0, y) = u(π, y) = 0 0 < y < A

u(x,A) = 0

u(x, 0) = f(x)

Apply the standard separation of variables, guessing u(x, y) = X(x)Y (y). After solving
each ODE we obtain:

Xn(x) = sin(nx), Yn(y) = sinh(n(A− y))

To find Yn(y), it involves solving for a constant c1 (or c2) with respect to the other
constant.
Hence, the solution u(x, y) is the following series

u(x, y) =
∞∑
n=1

bn
sinh(n(A− y))

sinh(nA)
sin(nx)

1
sinh(nA) is obtained from the boundary condition u(x, 0) = f(x).

Laplace’s Equation in a Circle
The PDE is still of the form ∂2u

∂x2 + ∂2u
∂y2

= 0, but now we have a new boundary condition:

x2 + y2 < 1. Our new PDE becomes:{
∂2u
∂x2 + ∂2u

∂y2
= 0 x2 + y2 < 1

u = f(θ), 0 < θ ≤ 2π

We apply separation of variables: guess u(r, θ) = R(r)Θ(θ). Solving for Θ is a familiar
situation to previous PDEs, as we will obtain Θn(θ) = An sin(nθ) +Bn cos(nθ).

To solve R(r), we will get a characteristic ODE r2R′′ + rR′ − n2R = 0. However, we also
have to analyze two separate cases: n = 0 and n ≥ 1.

If n = 0, then we have R(r) = a+ ln |r|+ b.

If n ≥ 1, the ODE is a characteristic polynomial. Therefore, we guess R(r) = rα, and the
final solution is n = ±α. So, R(r) = rn − r−n.
However, we need the series to converge. Because r < 1 by assumption, r−n diverges and
so we exclude r−n from our final solution.
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2 HOMOGENEOUS PDES IN TWO VARIABLES

The series solution to our PDE is

u(r, θ) =
a0
2

+
∞∑
n=1

rn(An sin(nθ) +Bn cos(nθ)).

with An and Bn complying to the standard Fourier Coefficients

An =
1

π

∫ π

−π
f(θ) cos(nθ)dθ,Bn =

1

π

∫ π

−π
f(θ) sin(nθ)dθ

.

Suppose the circle had a radius r as opposed to 1 such that boundary condition is
x2 + y2 < a. Then, we can apply a change of scale. Let r =

√
ar. Consider a new solution

v(r, θ) = u(
√
ar, θ). We now have that △v satisfies our standard boundary condition

r < 1. Solve the PDE as you would in the above case, and then rewrite r in terms of r in
your final solution.

Other boundary types: Annulus, Wedge
On an annulus, we have a different condition{

∂2u
∂x2 + ∂2u

∂y2
= 0 a < r < b, θ1 ≤ θ < θ2

u(a, θ) = f1(θ), u(b, θ) = f2(θ)

The procedure is mostly similar. Apply separation of variables and obtain the series
solution. However, we have to be cautious of how we set it up. For example, if
u(a, θ) = 0, we have to make sure f(b, θ) = an cos(nθ) + bn sin(nθ).

On a wedge, we have the boundary conditions{
∂2u
∂x2 + ∂2u

∂y2
= 0 0 < r ≤ a, 0 ≤ θ < θ

u(r, 0) = f(r), u(a, θ) = f(θ)

Poisson’s Integral
ASSUME that u(r, θ) is a solution to Laplace’s Equation on a circle with radius R. Then,

u(r, θ) =
R2 − r2

2π

∫ π

−π

f(ϕ)

r2 +R2 − 2Rr cos(θ − ϕ)
dϕ

.
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3 NONHOMOGENEOUS PROBLEMS AND GREEN’S FUNCTION

3 Nonhomogeneous Problems and Green’s Function

Green’s Function for Initial Value Problems
Let an ODE be of the form

u′′(x) + p(x)u′(x) + q(x)u(x) = f(x), u(a) = A, u′(a) = B

We can first guess two linearly independent solutions v1(x), v2(x) of the
non-homogeneous equation

v′′(x) + p(x)v′(x) + q(x)v(x) = 0

Now, let’s introduce the Wronskian, which outputs the determinant of a matrix
containing v1, v2. More specifically,

W (v1, v2) = v1v
′
2 − v′1v2

Finally, we denote the one-sided Green’s Function

R(x, ξ) =
−v1(x)v2(ξ) + v1(ξ)v2(x)

W (v1, v2)

The solution to such ODE is

u(x) =

∫ x

α
R(x, ξ)f(ξ)dξ

Remark: Note that the above solution is final IF the initial values are zero. If that is
not the case, we must add c1v1(x) + c2v2(x) to our solution, using our initial conditions
to find such c1, c2.

Green’s Function for Boundary Value Problems
Let an ODE be of the form

u′′(x) + p(x)u′(x) + q(x)u(x) = f(x), u(a) = A, u(b) = B

Then

G(x, ξ) =

{
G−(x, ξ) ξ ≤ x

G+(x, ξ) ξ ≥ x

and

u(x) =

∫ b

a
G(x, ξ)f(ξ)dξ −A

∂G

∂ξ
(x, a) +B

∂G

∂ξ
(x, b)

=

∫ x

a
G+(x, ξ)f(ξ)dξ +

∫ b

x
G−(x, ξ)f(ξ)dξ −A

∂G

∂ξ
(x, a) +B

∂G

∂ξ
(x, b)
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3 NONHOMOGENEOUS PROBLEMS AND GREEN’S FUNCTION

Here

G−(x, ξ) =
[v1(x)v2(b)− v1(b)v2(x)][v1(ξ)v2(a)− v1(a)v2(ξ)]

[v1(a)v2(b)− v1(b)v2(a)][v1(ξ)v
′
2(ξ)− v

′
1(ξ)v2(ξ)]

and

G+(x, ξ) =
[v1(x)v2(a)− v1(a)v2(x)][v1(ξ)v2(b)− v1(b)v2(ξ)]

[v1(a)v2(b)− v1(b)v2(a)][v1(ξ)v
′
2(ξ)− v

′
1(ξ)v2(ξ)]

.

Alternatively, you can write expressions for G(a, ξ), G(b, ξ) and set them equal to our
boundary values.

Nonhomogeneous Heat Equation
Say we have a PDE of the following form{

∂u
∂t −

∂2u
∂x2 = F (x, t) 0 < x < π, t > 0.

u(0, t) = u(π, t) = u(x, 0) = 0 0 ≤ x ≤ π, t > 0.

If a solution u(x, t) exists, then we can represent u(x, t) as a Fourier Series

u(x, t) ∼
∞∑
n=1

bn(t) sin(nx).

We can apply a Fourier Sine Transform because bn(t) uniquely describes the solution
u(x, t). To find such bn(t), we first want to find the standard Fourier coefficients written
solely as a function of t. We will call these set of coefficients Bn(t). So

Bn(t) =
2

π

∫ π

0
F (x, t) sin(nx)dx.

Now to solve b′n(t) + n2bn(t) = Bn(t) you apply the integrating factor and so

bn(t) =

∫ t

0
e−n2(t−τ)Bn(τ)dτ = e−n2t

∫ t

0
en

2τBn(τ)dτ

And so

u(x, t) =

∞∑
n=1

bn(t) sin(nx)

Example {
∂u
∂t −

∂2u
∂x2 = x(π − x) sin t 0 < x < π, t > 0.

u(x, 0) = u(0, t) = u(π, t) = 0 0 ≤ x ≤ π, t ≥ 0.

First, find the sine series for f(x) = x(π − x)

Bn =
2

π

∫ π

0
(πx− x2) sin(nx)dx
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3 NONHOMOGENEOUS PROBLEMS AND GREEN’S FUNCTION

The terms vanish when n is even so we get

B2k−1(t) =
8

π(2k − 1)3
sin t

To find our b2k−1(t) terms we apply the above integral

b2k−1 =

∫ t

0
e−(2k−1)2(t−τ)

(
8

(2k − 1)3π

)
sin(τ)dτ

After integrating by parts twice, the coefficients for b2k−1 is

b2k−1(t) =
8((2k − 1)2 sin t− cos t+ e−(2k−1)t)

(π(2k − 1)3)((2k − 1)4 + 1)

Hence our solution u(x, t) is

u(x, t) =
∞∑
k=1

8((2k − 1)2 sin t− cos t+ e−(2k−1)t)

(π(2k − 1)3)((2k − 1)4 + 1)
sin((2k − 1)x)

Nonhomogenous Laplace’s Equation on a Rectangle
Consider the PDE{

∂2u
∂x2 − ∂2u

∂y2
= F (x, y) 0 < x < π, 0 < y < A.

u(0, y) = u(π, y) = u(x, 0) = u(x,A) = 0 0 ≤ x ≤ π, 0 ≤ y ≤ A.

Compared to the Nonhomogeneous Heat Equation, the general approach is exactly the
same. Find the coefficients Bn(y) and then solve for bn(y). Find the Fourier Coefficients
for Bn(y) =

2
π

∫ π
0 F (x, y) sin(nx)dx. Now we solve the nonhomogeneous ODE for bn(y).

b′′n(y)− n2bn(y) = Bn(y)

This can be solved using the Green’s Function, but generally an easier approach will be
guessing the particular solution bn,p(y), which depends on the form of Bn(y).
As for the homogeneous solution of the ODE, the solution for each bn(y) is

bn,h(t) = c1e
ny + c2e

−ny

So the general solution of the ODE, for each n, is

bn(y) = bn,p(y) + bn,h(y) = bn,p(y) + c1e
ny + c2e

−ny.

Use the boundary conditions u(x, 0) and u(x,A) to solve for coefficients c1, c2.
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3 NONHOMOGENEOUS PROBLEMS AND GREEN’S FUNCTION

The final solution of the PDE is

u(x, y) =
∞∑
n=1

bn(y) sin(nx)

Example {
∂2u
∂x2 − ∂2u

∂y2
= y(1− y) sin3(x) 0 < x < π, 0 < y < 1.

u(0, y) = u(π, y) = u(x, 0) = u(x, 1) = 0 0 ≤ x ≤ π, 0 ≤ y ≤ 1.

While we can find the Fourier Series for Bn(y) by integrating, we know that
sin3(x) = 3

4 sinx− 1
4 sin(3x). Therefore we will have to solve two ODEs, one for b1(y) and

b3(y).
We have that B1(y) =

3
4y(1− y). We can ignore sinx because we are solving the ODE

with respect to y. In order to solve b′′1(y)− b1(y) =
3
4y(1− y), we need to guess the

particular solution. Here we can guess b1,p = ay2 + by + c, where b
′′
1,p = 2a. Our system

becomes

2a− ay2 − by − c =
3

4
y − 3

4
y2.

Solving the system gives us a = 3
4 , b = −3

4 , c = −3
2 and so

b1,p(y) =
3

4
y2 − 3

4
y − 3

2
.

Now, for the homogeneous solution b1,h, we have

b1,h = c1e
y + c2e

−y

Hence our final b1(y) is

b1(y) =
3

4
y2 − 3

4
y +

3

2
+ c1e

y + c2e
−y.

Using our boundary conditions b1(0) = 0, b1(1) = 0, we can solve for c1 and c2 and obtain
the solution to this ODE

b1(y) =
3

4

(
y2 − y + 2− 2

(
1 +

e2 − 1

e2 + e

)
ey + 2

(
e2 − 1

e2 + e

)
e−y

)
Solving for b3(y) follows the same procedure. Instead, we solve the ODE
b
′′
3(y)− 9b3(y) = −1

4y(1− y). We apply the same guess for our characteristic solution and
our homogeneous solution is b3,h = c1e

3y + c2e
−3y. The solution b3(y) for this specific

ODE is

b3(y) =

(
− 1

36
y2 +

1

36
y +

1

162
− 1

162

(
e3 − e6

e6 − 1
+ 1

)
e3y +

1

162

(
e3 − e6

e6 − 1

)
e−3y

)
9



3 NONHOMOGENEOUS PROBLEMS AND GREEN’S FUNCTION

Hence the solution u(x, y) is

u(x, y) =
∞∑
n=1

bn(y) sin(nx) = b1(y) sinx+ b3(y) sin(3x)

=
3

4

(
y2 − y + 2− 2

(
1 +

e2 − 1

e2 + e

)
ey + 2

(
e2 − 1

e2 + e

)
e−y

)
sinx

+

(
− 1

36
y2 +

1

36
y +

1

162
− 1

162

(
e3 − e6

e6 − 1
+ 1

)
e3y +

1

162

(
e3 − e6

e6 − 1

)
e−3y

)
sin(3x)

Nonhomogeneous Laplace’s Equation on a Disk
Consider the following PDE with corresponding boundary conditions{

∂2u
∂r2

+ 1
r
∂u
∂r + 1

r2
∂2u
∂θ2

= F (r, θ) r < R,−π ≤ θ < π

u(R, θ) = 0 −π ≤ θ < π

Much like the other nonhomogeneous problems, we seek coefficients an(r), bn(r) that
solve each ODE and conditions. Here we find an(r), bn(r) such that

a′′n(r) +
1

r
a′n(r)−

n2

r2
an(r) = An(r)

b′′n(r) +
1

r
b′n(r)−

n2

r2
bn(r) = Bn(r)

where

An(r) =
1

π

∫ π

−π
F (r, θ) cos(nθ)dθ,Bn(r) =

1

π

∫ π

−π
F (r, θ) sin(nθ)dθ

In the case where n = 0, we have that an = a′′n(r) +
1
ra

′
n(r) = 0. Multiplying by r2 yields

r2a′′n(r) + ra′n(r) = 0

We can solve the ODE using the integrating factor, giving the result

a0(r) =

∫ r

0
ln

(
r

ρ

)
A0(ρ)ρdρ+ C

The integrand ρdρ comes from rewriting the integral in polar form. With the initial
condition a0(R) = 0 gives us

C = −
∫ R

0
ln

(
R

ρ

)
A0(ρ)ρdρ

10



3 NONHOMOGENEOUS PROBLEMS AND GREEN’S FUNCTION

So

a0(r) =

∫ r

0
ln
( r

R

)
A0(ρ)ρdρ+

∫ R

r
ln
( ρ

R

)
A0(ρ)ρdρ

For n ≥ 1, we can use Green’s Function to find the solution. Guess
v1(r) = rn, v2(r) = r−n. Simple computation yields the coefficients

an(r) =
1

2n

∫ r

0

[( r

R

)n
−
(
R

r

)n]( ρ

R

)n
An(ρ)ρdρ+

1

2n

∫ R

r

[( ρ

R

)n
−
(
R

ρ

)n]( r

R

)n
An(ρ)ρdρ

bn(r) =
1

2n

∫ r

0

[( r

R

)n
−
(
R

r

)n]( ρ

R

)n
Bn(ρ)ρdρ+

1

2n

∫ R

r

[( ρ

R

)n
−
(
R

ρ

)n]( r

R

)n
Bn(ρ)ρdρ

Green’s Function for Nonhomogeneous PDEs
Recall Laplace’s Equation on a Rectangle{

∂2u
∂x2 − ∂2u

∂y2
= F (x, y) 0 < x < π, 0 < y < A.

u(0, y) = u(π, y) = u(x, 0) = u(x,A) = 0 0 ≤ x ≤ π, 0 ≤ y ≤ A.

The corresponding Green’s Function is as such

u(x, y) =

∫ A

0

∫ π

0
G(x, y, ξ, η)F (ξ, η)dξdη

where

G(x, y, ξ, η) =
2

π

∞∑
n=1

Gn(y, η) sin(nx) sin(nη)

and

Gn(y, η) =

{
sinh(n(η−A)) sinh(ny)

n sinh(nA) , 0 ≤ y ≤ η
sinh(nη)) sinh(n(y−A))

n sinh(nA) , η ≤ y ≤ A

Now, recall Laplace’s Equation on a Circle{
∂2u
∂r2

+ 1
r
∂u
∂r + 1

r2
∂2u
∂θ2

= F (r, θ) r < R,−π ≤ θ < π

u(R, θ) = 0 −π ≤ θ < π

The idea is that we want to find the corresponding Green’s Function G(r, θ; ρ, ϕ). We
have that

u(r, θ) =

∫ R

0

∫ π

−π
G(r, θ; ρ, ϕ)F (ρ, ϕ)ρdρdϕ

where

G(r, θ; ρ, ϕ) =
1

4π

{
− ln

[
R2 +

r2ρ2

R2
− 2rρ cos(θ − ϕ)

]
+ ln[r2 + ρ2 − 2rρ cos(θ − ϕ)]

}
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4 FOURIER SERIES IN TWO VARIABLES

Note that the derivation comes from deriving the complex form of the Green’s Function.
In addition, the arguments inside ln resemble the Law of Cosines formula.

4 Fourier Series in Two Variables

Double Fourier Series
Consider a 2π-periodic function f(x, y) in both x and y. Then its Fourier Series can be
derived as

f(x, y) ∼ 1

4
a00 +

1

2

∞∑
m=1

[a0m cos(my) + b0m sin(my)] +

∞∑
n=1

[an0 cos(nx) + cn0 sin(nx)]

+

∞∑
n=1

∞∑
m=1

[anm cos(nx) cos(my)+bnm cos(nx) sin(my)+cnm sin(nx) cos(my)+dnm sin(nx) sin(my)]

with corresponding coefficients

a00 =
1

π2

∫ π

−π

∫ π

−π
f(x, y)dxdy

a0m =
1

π2

∫ π

−π

∫ π

−π
f(x, y) cos(my)dxdy

b0m =
1

π2

∫ π

−π

∫ π

−π
f(x, y) sin(my)dxdy

an0 =
1

π2

∫ π

−π

∫ π

−π
f(x, y) cos(nx)dxdy

cn0 =
1

π2

∫ π

−π

∫ π

−π
f(x, y) sin(nx)dxdy

anm =
1

π2

∫ π

−π

∫ π

−π
f(x, y) cos(nx) cos(my)dxdy

bnm =
1

π2

∫ π

−π

∫ π

−π
f(x, y) cos(nx) sin(my)dxdy

cnm =
1

π2

∫ π

−π

∫ π

−π
f(x, y) sin(nx) cos(my)dxdy

dnm =
1

π2

∫ π

−π

∫ π

−π
f(x, y) sin(nx) sin(my)dxdy

Parseval’s Identity for Double Fourier Series

1

π2

∫ π

−π
f2(x, y)dxdy =

1

4
a200+

1

2

∞∑
m=1

(a20m+b20m)+
1

2

∞∑
n=1

(a2n0+c2n0)+
∞∑
n=1

∞∑
m=1

(a2nm+b2nm+c2nm+d2nm)

12



4 FOURIER SERIES IN TWO VARIABLES

Example: Find the double sine series of f(x, y) = x2y2. Also discuss its uniform
convergence.
We only have to find the coefficient dnm

dnm =
4

π2

∫ π

0

∫ π

0
x2y2 sin(nx) sin(my) =

[
π2(−1)n

n
+

2((−1)n − 1)

n3

] [
π2(−1)m

m
+

2((−1)m − 1)

m3

]
So

f(x, y) ∼ 4

π2

∞∑
n=1

∞∑
m=1

[
π2(−1)n

n
+

2((−1)n − 1)

n3

] [
π2(−1)m

m
+

2((−1)m − 1)

m3

]
sin(nx) sin(my)

We do not have uniform convergence as the double series does not have absolute
convergence.

Example: Find the full Fourier Series for f(x, y) = sin2(x)y3,−π < x, y < π
To simplify a lot of the computation, the only nonzero coefficients are b0m and bnm. The
other coefficients vanish because the integrands are odd functions. Now we compute b0m.

b0m =
1

π2

∫ π

−π
sin2 x sin(my)y3dxdy = 4π

(
6π(−1)m − π3(−1)m

m

)
While computing bnm, we evaluate the same integral for y in b0m. When we integrate∫ π

−π
sin2(x) sin(nx)dx

we notice that this integral is nonzero only when n = 2. When n = 2, the integral comes
out to π

2 . So we can rename the coefficient to b2m and so

b2m =
6(−1)m − π2(−1)m

m

Therefore, the Fourier Series expansion is

f(x, y) ∼ 2π

∞∑
m=1

6π(−1)m − π3(−1)m

m
sin(my) +

∞∑
m=1

6(−1)m − π2(−1)m

m
cos(2x) cos(my)

13



5 HOMOGENEOUS PDES IN THREE VARIABLES

5 Homogeneous PDEs in Three Variables

The Heat Equation in a Square
We consider

∂u
∂t −

∂2u
∂x2 − ∂2u

∂y2
= 0, 0 < x, y < π, t > 0

u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0

u(x, y, 0) = g(x, y), 0 ≤ x, y ≤ π

We apply the standard separation of variables, this time with 3 variables: X,Y, T . So
guess a solution of the form u(x, y, t) = X(x)Y (y)T (t). Dividing by XY T yields

T ′

T
− X ′′

X
− Y ′′

Y
= 0

We first solve the case for X(x). We consider

T ′

T
− Y ′′

Y
=

X ′′

X

But we know that both sides must be constant, so let

T ′

T
− Y ′′

Y
=

X ′′

X
= C1.

We solve the case for X(x). {
X ′′ − C1X = 0 0 < x < π

X(0) = X(π) = 0

We already know this yields the solution X(x) = sin(nx), where C1 = −n2 for n ≥ 1.
For solving Y (y) and T (t), we have the setup

T ′

T
=

Y ′′

Y
+ C1

Again, both sides are equal to a constant, say C2. So

T ′

T
=

Y ′′

Y
+ C1 = C2

We solve Y (y) {
Y ′′ + (C1 − C2)Y = 0 0 < y < π

Y (0) = Y (π) = 0

This will also yield Y (y) = sin(my), this time C1 − C2 = m2 for m ≥ 1.

14



5 HOMOGENEOUS PDES IN THREE VARIABLES

Since C1 −C2 = m2, this gives C2 = C1 −m2 = m2 + n2. As for solving T (t), we have the
equation

T ′ + (m2 + n2)T = 0 =⇒ e−(m2+n2)t.

By verifying the boundary conditions and checking for convergence, we conclude that the
double series solution

u(x, y, t) =
∞∑
n=1

∞∑
n=1

dnme−(m2+n2)t sin(nx) sin(my)

satisfies the Heat Equation.

Example: Solve the Heat Equation in a Square
∂u
∂t −

∂2u
∂x2 − ∂2u

∂y2
= 0, 0 < x, y < π, t > 0

u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0

u(x, y, 0) = sin3 x sin5 y, 0 ≤ x, y ≤ π

We have that sin3 x = 3
4 sinx− 1

4 sin(3x) and sin5 y = 5
8 sin y −

5
16 sin(3y) +

1
16 sin(5y) (See

Appendix).
By expansion

sin3 x sin5 y =
15

32
sinx sin y − 15

64
sinx sin(3y) +

3

64
sinx sin(5y)

− 5

32
sin(3x) sin y +

5

64
sin(3x) sin(3y)− 1

64
sin(3x) sin(5y)

So d1,1 =
15
32 , d1,3 = −15

64 , d1,5 =
3
64 , d3,1 = − 5

32 , d3,3 =
5
64 , d3,5 = − 1

64 .
Our final solution is

u(x, y, t) =
15

32
e−2t sinx sin y − 15

64
e−10t sin(x) sin(3y) +

3

64
e−26t sinx sin(5y)

− 5

32
e−10t sin(3x) sin y +

5

64
e−18t sin(3x) sin(3y)− 1

64
e−34t sin(3x) sin(5y)

Laplace’s Equation in a Cube
Consider the PDE

∂2u
∂x2 − ∂2u

∂y2
− ∂2u

∂z2
= 0, 0 < x, y, z < π

u(0, y, z) = u(π, y, z) = u(x, 0, z) = u(x, π, z) = 0

u(x, y, 0) = g(x, y), 0 ≤ x, y ≤ π

We guess a solution of the form u(x, y, z) = X(x)Y (y)Z(z) that solves the Laplace
Equation. We follow the same procedure as with the Heat Equation in a Square. We get

15



5 HOMOGENEOUS PDES IN THREE VARIABLES

the X(x) = sin(nx), Y (y) = sin(my). Solving Z(z) will yield a function of hyperbolic
sine/cosine.

Idea: We solve the ODE Z ′′ + c1Z = 0. Since c1 = −(n2 +m2) (see Heat Eq in a Square),
we have Z ′′ = (n2 +m2)Z. This gives

Z(z) = Ae
√
n2+m2z +Be−

√
n2+m2z

Plugging in the initial conditions Z(π) = 0

B = −Ae2
√
m2+n2π

And so

Z(z) = 2Ae
√
n2+m2π

(
e
√
n2+m2(z−π) − e

√
n2+m2(π−z)

2

)
Therefore Z is a multiple of sinh(π − z) and the candidate solution for u(x, y, z) is

u(x, y, z) ∼
∞∑
n=1

∞∑
m=1

αnm sinh
(√

n2 +m2(π − z)
)
sin(nx) sin(my)

Plugging in our initial condition u(x, y, 0) = g(x, y) yields

u(x, y, z) =

∞∑
n=1

∞∑
m=1

dnm
sinh

(√
n2 +m2(π − z)

)
sinh

√
n2 +m2π

sin(nx) sin(my)

Note that dnm is obtained by setting it equal to αnm sinh
√
n2 +m2π, where

dnm =
1

4π2

∫ π

0

∫ π

0
g(x, y) sin(nx) sin(my)dxdy

Example: Solve the Laplace’s Equation in a Cube
∂2u
∂x2 − ∂2u

∂y2
− ∂2u

∂z2
= 0, 0 < x, y, z < π

u(0, y, z) = u(π, y, z) = u(x, 0, z) = u(x, π, z) = 0

u(x, y, 0) = sin(x) sin3(y), 0 ≤ x, y ≤ π

Since sin3(y) = 3
4 sin(y)−

1
4 sin(3y), we have that d1,1 =

3
4 , d1,3 = −1

4 . We hence obtain
the solution

u(x, y, z) =
3 sinh(

√
2(π − z))

4 sinh
√
2π

sin(x) sin(y)− sinh(
√
10(π − z))

4 sinh
√
10π

sin(x) sin(3y)

16



5 HOMOGENEOUS PDES IN THREE VARIABLES

Example: Solve the Modified Laplace’s Equation on a Cube

∂2u
∂x2 − ∂2u

∂y2
− ∂2u

∂z2
− u = 0, 0 < x < π, 0 < y < π

2 , 0 < z < 1

u(0, y, z) = u(x, 0, z) = u(x, y, 1) = 0
∂u
∂x(x, y, z) = 0
∂u
∂y

(
x, π2 , z

)
= 0

u(x, y, 0) = 2x− π

Guess the solution u(x, y, z) = X(x)Y (y)Z(z). Then

X ′′Y Z +XY ′′Z +XY Z ′′ −XY Z = 0 =⇒ X ′′

X
+

Y ′′

Y
+

Z ′′

Z
− 1 = c1

=⇒ X ′′

X
+

Y ′′

Y
= −Z ′′

Z
+ c1 =⇒

X ′′

X
= −Y ′′

Y
+ c1 = c2.

Solving the below ODE {
X ′′ = c2X

X(0) = X ′(π) = 0

Guess X(x) = A cos(
√
c2x) +B sin(

√
c2x).

X(0) = 0 =⇒ A = 0, X ′(π) = 0 =⇒ cos(
√
c1x) = 0 =⇒ c1 = −

(
2n− 1

2

)2

So X(x) = sin
((

2n−1
2

)
x
)
.

Now we solve the ODE for Y (y) {
Y ′′ = (c1 − c2)Y

Y (0) = Y ′ (π
2

)
= 0

Guess Y (y) = A cos (
√
c1 − c2y) +B sin (

√
c1 − c2y). We follow the same procedure for

X(x), this time let
√
c1 − c2 = 2m− 1. So c1 − c2 = (2m− 1)2.

Therefore Y (y) = sin((2m− 1)y).

Also, c1 − c2 = −(2m− 1)2 =⇒ c1 = −(2m− 1) + c2 = −(2m− 1)−
(
2n−1

2

)2
.

Solving Z(z)

−Z ′′

Z
+ 1 = c1 =⇒ Z ′′ = (1− c1)Z{

Z ′′ = (c1 − c2)Z

Z(1) = 0

17



5 HOMOGENEOUS PDES IN THREE VARIABLES

We obtain

Z(z) = sinh(
√
1− c1) = sinh

√
1 +

(
2n− 1

2

)2

+ (2m− 1)2(1− z)

Therefore the candidate solution for the series solution is

u(x, y, z) ∼
∞∑
n=1

∞∑
m=1

dnm sinh

√1 +

(
2n− 1

2

)2

+ (2m− 1)2(1− z)

 sin

(
2n− 1

2
x

)
sin((2m−1)y)

Plugging in initial condition yields

∂u

∂z
|z=0 = −

√
1 +

(
2n− 1

2

)2

+ (2m− 1)2
∞∑
n=1

∞∑
m=1

dnm cosh

√1 +

(
2n− 1

2

)2

+ (2m− 1)2


sin

(
2n− 1

2
x

)
sin((2m− 1)y) = 2x− π

And so

dnm = −
4
π2

∫ π
2
0

∫ π
0 (2x− π) sin

(
2n−1

2 x
)
sin((2m− 1)y)dxdy√

1 +
(
2n−1

2

)2
+ (2m− 1)2 cosh

(√
1 +

(
2n−1

2

)2
+ (2m− 1)2

)
We have∫ π

2

0

∫ π

0
(2x− π) sin

(
2n− 1

2
x

)
sin((2m− 1)y)dxdy =

2π

2m− 1

(
1

2n− 1
− 2(−1)n

(2n− 1)2

)
By plugging in the above integral in the expression for dnm we get our final solution

u(x, y, z) =
8

π

∞∑
n=1

∞∑
m=1

(
1

2n−1 − 2(−1)n

(2n−1)2

)
sinh

(√
1 +

(
2n−1

2

)2
+ (2m− 1)2(1− z)

)
(2m− 1)

√
1 +

(
2n−1

2

)2
+ (2m− 1)2 cosh

(√
1 +

(
2n−1

2

)2
+ (2m− 1)2

)
· sin

(
2n− 1

2
x

)
sin((2m− 1)y)

Laplace’s Equation in a Cylinder
Consider the PDE

∂2u
∂r2

+ 1
r
∂u
∂r + 1

r2
∂2u
∂θ2

+ ∂2u
∂z2

= 0 0 < r < R1,−π ≤ θ < π, 0 < z < π

u(r, θ, 0) = u(r, θ, π) = 0 0 < r < R1,−π ≤ θ < π

u(R1, θ, z) = g(θ, z) −π ≤ θ ≤ π, 0 ≤ z ≤ π

18



5 HOMOGENEOUS PDES IN THREE VARIABLES

Let R(r)Θ(θ)Z(z) be a function that satisfies the equation. Then, we have that

R′′ΘZ +
1

r
RΘZ +

1

r2
RΘ′′Z +RΘZ ′′ = 0

Dividing by RΘZ yields

R′′ + 1
rR

′

R
+

1

r2
Θ′′

Θ
= −Z ′′

Z
= C1 and

r2R′′ + rR′

R
− C1r

2 = −Θ

θ
= C2.

We get Z(z) = sin(nx) and c1 = n2 for n ≥ 1. As for Θ(θ), the solution to its ODE is
Θ(θ) = sin(mθ) + cos(mθ) for C2 = m2. Finding R(r) involves solving a special type of
ODE: the Modified Bessel’s Equation. We will see that its corresponding equation for R is

r2R′′ + rR′ − (n2r2 +m2)R = 0

The components to solving the ODE is very technical, involving manipulation of power
series. The final form of the solution is

Im(γ) =

∞∑
ℓ=0

1

ℓ!(ℓ+m)!

(
ℓ

2

)m+2ℓ

.

If we choose Rmn(R1) = 1 for all m,n, then the solution for Rmn(r) is

Rmn(r) =
Im(nr)

Im(nR1)

where Im(nr) and Im(nR1) are the associated Bessel’s equations.
Therefore, the final solution for the PDE becomes

u(r, θ, z) =
1

2

∞∑
n=1

cn0
I0(nr)

I0(nR1)
sin(nz)

+
∞∑
n=1

∞∑
m=1

I0(nr)

I0(nR1)
sin(nz)(cnm cos(mθ) + dnm sin(mθ))

If we set r = R1 then the Bessel’s equations vanish and we get

g(θ, z) =
1

2

∞∑
n=1

cn0 sin(nz) +

∞∑
n=1

∞∑
m=1

sin(nz)(cnm cos(mθ) + dnm sin(mθ))

with the Fourier coefficients

cnm =
2

π2

∫ π

0

∫ π

−π
g(θ, z) sin(nz) cos(mθ)dθdz
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5 HOMOGENEOUS PDES IN THREE VARIABLES

dnm =
2

π2

∫ π

0

∫ π

−π
g(θ, z) sin(nz) sin(mθ)dθdz

Example: Solve Laplace’s Equation in a Cylinder
∂2u
∂r2

+ 1
r
∂u
∂r + 1

r2
∂2u
∂θ2

+ ∂2u
∂z2

= 0 0 < r < 1,−π ≤ θ < π, 0 < z < π

u(r, θ, 0) = u(r, θ, π) = 0 0 < r < 1,−π ≤ θ < π

u(1, θ, z) = z(π − z) cos2 θ −π ≤ θ ≤ π, 0 ≤ z ≤ π

First notice that cos2 θ = 1
2 + 1

2 cos(2θ) and finding the sine series for z(π − z) sin(nz)
yields

z(π − z) =
∞∑
n=1

4(1− (−1)n)

πn3
sin(nz)

dnm has no terms because we only have cosine terms and the solution is defined for
m = 0, 2 but is zero otherwise. So, the final solution is

u(r, θ, z) =
∞∑
n=1

2(1− (−1)n

n3π
· I0(nr)
I0(n)

sin(nz) +
∞∑
n=1

2(1− (−1)n)

n3π

I2(nr)

I2(n)
sin(nz) cos(2θ)
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Damped Waves in a Square
Consider the PDE

∂2u
∂t2

+ 2a∂u
∂t − c2

(
∂2u
∂x2 + ∂2u

∂y2

)
= 0 0 < x, y < π, t > 0

u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0 t ≥ 0

u(x, y, 0) = f(x, y) 0 ≤ x, y ≤ π
∂u
∂t (x, y, 0) = 0

Let X(x)Y (y)T (t) be a function that satisfies the equation. Then

XY T ′′ + 2aXY T ′ − c2(X ′′Y T +XY ′′T ) = 0

Dividing by XY Tc2 yields

T ′′

c2T
+

2aT ′

c2T
− X ′′

X
− Y ′′

Y
= 0 =⇒ T ′′ + 2aT ′

c2T
− Y ′′

Y
=

X ′′

X
= c1

Standard arguments lend X(x) to the solution X(x) = sin(nx) for c1 = −n2. Now we find
a solution for Y (y).

T ′′ + 2aT

c2T
− c1 =

Y ′′

Y
= c2

By similar reasoning, Y (y) = sin(my) for c2 = −m2. For T (t), we get a characteristic
ODE of the form

T 2 + 2aT + c2(n2 +m2) = 0

The corresponding solution depends on the discriminant for given a, c, n,m. We have that

Tnm(t) = e−at

[
cosh

√
a2 − c2(n2 +m2)t+

a√
a2 − c2(n2 +m2)

sinh
√
a2 − c2(n2 +m2)t

]
for
√
n2 +m2 <

a

c

Tnm(t) = e−at(1 + at) for
√

n2 +m2 =
a

c

Tnm(t) = e−at

[
cos
√

c2(n2 +m2)− a2t+
a√

c2(n2 +m2)− a2
sin
√
c2(n2 +m2)− a2t

]
for
√

n2 +m2 >
a

c
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5 HOMOGENEOUS PDES IN THREE VARIABLES

Hence we obtain the solution

u(x, y, t) =
∞∑
n=1

∞∑
m=1

dnmTnm(t) sin(nx) sin(my)

Where dnm is the Fourier coefficients of the double sine-series from the condition
u(x, y, 0) = f(x, y).

dnm =
4

π2

∫ π

0

∫ π

0
f(x, y) sin(nx) sin(my)dxdy

Example: Solve the Damped Wave equation in a Square
∂2u
∂t2

+ 4∂u
∂t −

(
∂2u
∂x2 + ∂2u

∂y2

)
= 0 0 < x, y < π, t > 0

u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0 t ≥ 0

u(x, y, 0) = sin3 x sin3 y 0 ≤ x, y ≤ π
∂u
∂t (x, y, 0) = 0

Here a = 2, c = 1. By decomposition of sin3 x sin3 y

sin3 x sin3 y =
9

16
sinx sin y − 3

16
sinx sin(3y)− 3

16
sin(3x) sin y +

1

16
sin(3x) sin(3y)

Finding each Tmn(t) is simply checking the conditions of the discriminant. For example,
T1,1(t) has

√
2 < 2, so we use the first equation in the last page. Similar arguments yield

to the final solution

u(x, y, t) =
9

16
e−2t[cosh

√
2t+

√
2 sinh

√
2t] sinx sin y− 3

16
e−2t

[
cos

√
6t+

2√
6
sin

√
6t

]
sinx sin(3y)

− 3

16
e−2t

[
cos

√
6t+

2√
6
sin

√
6t

]
sin(3x) sin y+

1

16
e−2t

[
cos

√
14t+

2√
14

sin
√
14t

]
sin(3x) sin(3y)
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6 ABOUT UNIFORM CONVERGENCE AND DIFFERENTIATION

6 About Uniform Convergence and Differentiation

When we find a series solution to a PDE, we require uniform convergence and
term-by-term differentiation to know that the series converges to the solution everywhere.
To prove that a series is uniformly convergent, we show that the series solution is
absolutely convergent. To prove that a series can be differentiated term by term, show
that the derivative of a series converges absolutely.

Example: Let the following series be a solution to a PDE. Show that it converges
uniformly.

u(x, y) =
∞∑
k=1

b2k−1(y) sin((2k − 1)x)

where

b2k−1 =
8

(2k − 1)5π
y2 − 8

(2k − 1)5
y +

16

(2k − 1)7π

+
16

(2k − 1)7π
· sinh((2k − 1)(y − π))− sinh((2k − 1)y)

sinh((2k − 1)π)

First, we have | sin((2k− 1)x)| ≤ 1. Now we show b2k−1(y) converges. We rewrite the sinh
terms as

sinh((2k − 1)(y − π)) = e(2k−1)(y−π) − e(2k−1)(π−y)

sinh((2k − 1)y) = e(2k−1)y − e−(2k−1)y

sinh((2k − 1)π) = e(2k−1)π − e−(2k−1)π

so sinh((2k−1)(y−π))−sinh((2k−1)y)
sinh((2k−1)π) becomes

e(2k−1)(y−π) − e(2k−1)(π−y) − e(2k−1)y − e−(2k−1)y

e(2k−1)π − e−(2k−1)π
.

We factor out e(2k−1)π from both the numerator and the denominator to obtain

e(2k−1)π(e(2k−1)(y−2π) − e−(2k−1)(y−π))

e(2k−1)π(1− e−2(2k−1)π)
=

e(2k−1)(y−2π) − e−(2k−1)(y−π)

1− e−2(2k−1)π

We can verify that on y ∈ [0, π], the numerator is always smaller than 1, and the
denominator is always larger than 1− e−2π. It should be obvious that

1

1− e−2π
< 2.

Now we look at the other terms. We have that

b2k−1 ≤
∣∣∣∣ 8π + 8π

(2k − 1)5

∣∣∣∣+ ∣∣∣∣ 16

(2k − 1)7π

∣∣∣∣+ 2 ·
∣∣∣∣ 16

(2k − 1)7π

∣∣∣∣
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6 ABOUT UNIFORM CONVERGENCE AND DIFFERENTIATION

Since 1
(2k−1)7

≤ 1
(2k−1)5

we finally have

b2k−1(y) ≤
16

(2k − 1)5
+

48

(2k − 1)5
=

16π + 48

(2k − 1)5

which converges by p−series. So, b2k−1(y) converges by comparison to the above series,
and we have uniform converge.
The proof for term-by-term differentiation is the same idea. This time, we show that
∂u
∂x ,

∂u
∂y ,

∂2u
∂x2 ,

∂2u
∂y2

are all uniformly convergent. Proving all of these follows the process we
did for the actual series solution. Therefore, term-by-term differentiation is valid.
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7 APPENDIX AND OTHER RESOURCES

7 Appendix and Other Resources

Product-to-Sum Identities

cos(a) cos(b) =
1

2
(cos(a+ b) + cos(a− b))

sin(a) sin(b) =
1

2
(cos(a− b)− cos(a+ b))

cos(a) sin(b) =
1

2
(sin(a+ b) + sin(a− b))

sin(a) cos(b) =
1

2
(sin(a+ b)− sin(a− b))

Deriving sin5 x: We use the fact that sin3 x = 3
4 sinx−

1
4 sin(3x) to lower the computation.

sin5 x = sin3 x · sin2 x =

(
3

4
sinx− 1

4
sin(3x)

)(
1

2
(1− cos(2x))

)
sinx cos(2x) =

1

2
(sin(3x)− sinx), sin(3x) cos(2x) =

1

2
(sin(5x) + sin(x))

So

sin5 x =
3

8
sin(x)− 1

8
sin(3x)− 3

16
sin(3x) +

3

16
sin(x) +

1

16
sin(5x) +

1

16
sin(x)

=
5

8
sinx− 5

16
sin(3x) +

1

16
sin(5x)
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